Spaces:
Running
Running
Update Linkedin_Data_API_Calls.py
Browse files- Linkedin_Data_API_Calls.py +435 -139
Linkedin_Data_API_Calls.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
import json
|
| 2 |
import requests
|
| 3 |
import html
|
|
|
|
| 4 |
from datetime import datetime
|
| 5 |
from collections import defaultdict
|
|
|
|
| 6 |
from transformers import pipeline
|
| 7 |
|
| 8 |
from sessions import create_session
|
|
@@ -14,19 +16,72 @@ import logging
|
|
| 14 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 15 |
|
| 16 |
API_V2_BASE = 'https://api.linkedin.com/v2'
|
| 17 |
-
API_REST_BASE = "https://api.linkedin.com/rest"
|
| 18 |
|
| 19 |
-
# Initialize sentiment pipeline (
|
| 20 |
sentiment_pipeline = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def fetch_linkedin_posts_core(comm_client_id, community_token, org_urn, count):
|
| 23 |
"""
|
| 24 |
Fetches raw posts, their basic statistics, and performs summarization/categorization.
|
| 25 |
-
Does NOT fetch comments or analyze sentiment.
|
| 26 |
"""
|
| 27 |
token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
|
| 28 |
session = create_session(comm_client_id, token=token_dict)
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
posts_url = f"{API_REST_BASE}/posts?author={org_urn}&q=author&count={count}&sortBy=LAST_MODIFIED"
|
| 32 |
logging.info(f"Fetching posts from URL: {posts_url}")
|
|
@@ -37,19 +92,19 @@ def fetch_linkedin_posts_core(comm_client_id, community_token, org_urn, count):
|
|
| 37 |
logging.info(f"Fetched {len(raw_posts_api)} raw posts from API.")
|
| 38 |
except requests.exceptions.RequestException as e:
|
| 39 |
status = getattr(e.response, 'status_code', 'N/A')
|
| 40 |
-
|
|
|
|
| 41 |
raise ValueError(f"Failed to fetch posts (Status: {status})") from e
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
if not raw_posts_api:
|
| 44 |
logging.info("No raw posts found.")
|
| 45 |
-
return [], {},
|
| 46 |
|
| 47 |
-
# Filter for valid post types if necessary, e.g., shares or ugcPosts
|
| 48 |
-
# post_urns_for_stats = [p["id"] for p in raw_posts_api if ":share:" in p["id"] or ":ugcPost:" in p["id"]]
|
| 49 |
post_urns_for_stats = [p["id"] for p in raw_posts_api if p.get("id")]
|
| 50 |
|
| 51 |
-
|
| 52 |
-
# Prepare texts for summarization/classification
|
| 53 |
post_texts_for_nlp = []
|
| 54 |
for p in raw_posts_api:
|
| 55 |
text_content = p.get("commentary") or \
|
|
@@ -57,39 +112,57 @@ def fetch_linkedin_posts_core(comm_client_id, community_token, org_urn, count):
|
|
| 57 |
"[No text content]"
|
| 58 |
post_texts_for_nlp.append({"text": text_content, "id": p.get("id")})
|
| 59 |
|
| 60 |
-
logging.info(f"Prepared {len(post_texts_for_nlp)} posts for NLP.")
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
| 64 |
|
|
|
|
| 65 |
|
| 66 |
-
# Fetch statistics
|
| 67 |
stats_map = {}
|
| 68 |
if post_urns_for_stats:
|
| 69 |
-
|
| 70 |
-
|
|
|
|
| 71 |
params = {'q': 'organizationalEntity', 'organizationalEntity': org_urn}
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
|
|
|
|
|
|
|
|
|
| 77 |
try:
|
| 78 |
-
logging.info(f"Fetching stats for batch starting with URN: {batch_urns[0]}")
|
| 79 |
stat_resp = session.get(f"{API_REST_BASE}/organizationalEntityShareStatistics", params=params)
|
| 80 |
stat_resp.raise_for_status()
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
except requests.exceptions.RequestException as e:
|
| 87 |
-
|
| 88 |
-
|
|
|
|
| 89 |
except json.JSONDecodeError as e:
|
| 90 |
logging.warning(f"Failed to decode JSON from stats response: {e}. Response: {stat_resp.text if stat_resp else 'No response text'}")
|
| 91 |
|
| 92 |
-
|
| 93 |
processed_raw_posts = []
|
| 94 |
for p in raw_posts_api:
|
| 95 |
post_id = p.get("id")
|
|
@@ -101,7 +174,7 @@ def fetch_linkedin_posts_core(comm_client_id, community_token, org_urn, count):
|
|
| 101 |
p.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text", "") or \
|
| 102 |
"[No text content]"
|
| 103 |
|
| 104 |
-
timestamp = p.get("publishedAt") or p.get("createdAt")
|
| 105 |
published_at_iso = datetime.fromtimestamp(timestamp / 1000).isoformat() if timestamp else None
|
| 106 |
|
| 107 |
structured_res = structured_results_map.get(post_id, {"summary": "N/A", "category": "N/A"})
|
|
@@ -113,68 +186,72 @@ def fetch_linkedin_posts_core(comm_client_id, community_token, org_urn, count):
|
|
| 113 |
"category": structured_res["category"],
|
| 114 |
"published_at_timestamp": timestamp,
|
| 115 |
"published_at_iso": published_at_iso,
|
| 116 |
-
|
| 117 |
-
"
|
| 118 |
-
"
|
| 119 |
-
|
|
|
|
| 120 |
})
|
| 121 |
logging.info(f"Processed {len(processed_raw_posts)} posts with core data.")
|
| 122 |
-
return processed_raw_posts, stats_map,
|
| 123 |
|
| 124 |
|
| 125 |
-
def fetch_comments(comm_client_id,
|
| 126 |
"""
|
| 127 |
Fetches comments for a list of post URNs.
|
| 128 |
Uses stats_map to potentially skip posts with 0 comments.
|
| 129 |
"""
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
linkedin_session
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
linkedin_session.headers.update({'LinkedIn-Version': "202502"})
|
| 137 |
|
| 138 |
all_comments_by_post = {}
|
| 139 |
logging.info(f"Fetching comments for {len(post_urns)} posts.")
|
| 140 |
|
| 141 |
for post_urn in post_urns:
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
| 144 |
logging.info(f"Skipping comment fetch for {post_urn} as commentCount is 0 in stats_map.")
|
| 145 |
all_comments_by_post[post_urn] = []
|
| 146 |
continue
|
| 147 |
|
| 148 |
try:
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
url = f"{API_REST_BASE}/socialActions/{post_urn}/comments"
|
| 153 |
logging.debug(f"Fetching comments from URL: {url} for post URN: {post_urn}")
|
| 154 |
response = linkedin_session.get(url)
|
| 155 |
|
| 156 |
if response.status_code == 200:
|
| 157 |
elements = response.json().get('elements', [])
|
| 158 |
-
comments_texts = [
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
if
|
| 162 |
-
|
| 163 |
all_comments_by_post[post_urn] = comments_texts
|
| 164 |
logging.info(f"Fetched {len(comments_texts)} comments for {post_urn}.")
|
| 165 |
-
elif response.status_code == 403:
|
| 166 |
-
logging.warning(f"Forbidden (403) to fetch comments for {post_urn}. URL: {url}. Response: {response.text}")
|
| 167 |
all_comments_by_post[post_urn] = []
|
| 168 |
-
elif response.status_code == 404:
|
| 169 |
logging.warning(f"Comments not found (404) for {post_urn}. URL: {url}. Response: {response.text}")
|
| 170 |
all_comments_by_post[post_urn] = []
|
| 171 |
else:
|
| 172 |
-
logging.error(f"Error fetching comments for {post_urn}. Status: {response.status_code}. Response: {response.text}")
|
| 173 |
all_comments_by_post[post_urn] = []
|
| 174 |
except requests.exceptions.RequestException as e:
|
| 175 |
logging.error(f"RequestException fetching comments for {post_urn}: {e}")
|
| 176 |
all_comments_by_post[post_urn] = []
|
| 177 |
-
except
|
|
|
|
|
|
|
|
|
|
| 178 |
logging.error(f"Unexpected error fetching comments for {post_urn}: {e}")
|
| 179 |
all_comments_by_post[post_urn] = []
|
| 180 |
|
|
@@ -182,64 +259,68 @@ def fetch_comments(comm_client_id, token_dict, post_urns, stats_map):
|
|
| 182 |
|
| 183 |
def analyze_sentiment(all_comments_data):
|
| 184 |
"""
|
| 185 |
-
Analyzes sentiment for comments grouped by post_urn.
|
| 186 |
all_comments_data is a dict: {post_urn: [comment_text_1, comment_text_2,...]}
|
| 187 |
-
Returns a dict: {post_urn: {"sentiment": "
|
| 188 |
"""
|
| 189 |
results_by_post = {}
|
| 190 |
-
logging.info(f"Analyzing sentiment for comments from {len(all_comments_data)} posts.")
|
| 191 |
for post_urn, comments_list in all_comments_data.items():
|
| 192 |
-
|
| 193 |
total_valid_comments_for_post = 0
|
| 194 |
|
| 195 |
if not comments_list:
|
| 196 |
-
results_by_post[post_urn] = {"sentiment": "Neutral 😐", "percentage": 0.0, "details":
|
| 197 |
continue
|
| 198 |
|
| 199 |
for comment_text in comments_list:
|
| 200 |
-
if not comment_text or not comment_text.strip():
|
| 201 |
continue
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
elif label == 'NEUTRAL':
|
| 213 |
-
sentiment_counts['Neutral 😐'] += 1
|
| 214 |
-
else: # Other labels from the model
|
| 215 |
-
sentiment_counts['Unknown'] += 1
|
| 216 |
-
total_valid_comments_for_post += 1
|
| 217 |
-
except Exception as e:
|
| 218 |
-
logging.error(f"Sentiment analysis failed for comment under {post_urn}: '{comment_text[:50]}...'. Error: {e}")
|
| 219 |
-
sentiment_counts['Error'] += 1
|
| 220 |
|
|
|
|
|
|
|
|
|
|
| 221 |
if total_valid_comments_for_post > 0:
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
results_by_post[post_urn] = {
|
| 231 |
-
"sentiment":
|
| 232 |
"percentage": percentage,
|
| 233 |
-
"details": dict(
|
| 234 |
}
|
| 235 |
-
logging.debug(f"
|
| 236 |
-
|
| 237 |
return results_by_post
|
| 238 |
|
| 239 |
|
| 240 |
def compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post):
|
| 241 |
"""
|
| 242 |
-
Combines processed raw post data with their statistics and overall sentiment.
|
| 243 |
"""
|
| 244 |
detailed_post_list = []
|
| 245 |
logging.info(f"Compiling detailed data for {len(processed_raw_posts)} posts.")
|
|
@@ -248,23 +329,18 @@ def compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post):
|
|
| 248 |
stats = stats_map.get(post_id, {})
|
| 249 |
|
| 250 |
likes = stats.get("likeCount", 0)
|
| 251 |
-
|
| 252 |
-
# LinkedIn sometimes has commentSummary.totalComments
|
| 253 |
-
comments_stat_count = stats.get("commentSummary", {}).get("totalComments") if "commentSummary" in stats else stats.get("commentCount", 0)
|
| 254 |
|
| 255 |
clicks = stats.get("clickCount", 0)
|
| 256 |
shares = stats.get("shareCount", 0)
|
| 257 |
impressions = stats.get("impressionCount", 0)
|
| 258 |
-
unique_impressions = stats.get("uniqueImpressionsCount", 0)
|
| 259 |
|
| 260 |
-
# Calculate engagement: (likes + comments + clicks + shares) / impressions
|
| 261 |
-
# Ensure impressions is not zero to avoid DivisionByZeroError
|
| 262 |
engagement_numerator = likes + comments_stat_count + clicks + shares
|
| 263 |
-
engagement_rate = (engagement_numerator / impressions * 100) if impressions else 0.0
|
| 264 |
|
| 265 |
-
sentiment_info = sentiments_per_post.get(post_id, {"sentiment": "Neutral 😐", "percentage": 0.0})
|
| 266 |
|
| 267 |
-
# Format text for display (escaped and truncated)
|
| 268 |
display_text = html.escape(proc_post["raw_text"][:250]).replace("\n", "<br>") + \
|
| 269 |
("..." if len(proc_post["raw_text"]) > 250 else "")
|
| 270 |
|
|
@@ -274,25 +350,25 @@ def compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post):
|
|
| 274 |
detailed_post_list.append({
|
| 275 |
"id": post_id,
|
| 276 |
"when": when_formatted,
|
| 277 |
-
"text_for_display": display_text,
|
| 278 |
-
"raw_text": proc_post["raw_text"],
|
| 279 |
"likes": likes,
|
| 280 |
-
"comments_stat_count": comments_stat_count,
|
| 281 |
"clicks": clicks,
|
| 282 |
"shares": shares,
|
| 283 |
"impressions": impressions,
|
| 284 |
"uniqueImpressionsCount": unique_impressions,
|
| 285 |
-
"engagement": f"{engagement_rate:.2f}%",
|
| 286 |
-
"engagement_raw": engagement_rate,
|
| 287 |
"sentiment": sentiment_info["sentiment"],
|
| 288 |
"sentiment_percent": sentiment_info["percentage"],
|
| 289 |
-
"sentiment_details": sentiment_info.get("details", {}),
|
| 290 |
"summary": proc_post["summary"],
|
| 291 |
"category": proc_post["category"],
|
| 292 |
"organization_urn": proc_post["organization_urn"],
|
| 293 |
-
"is_ad":
|
| 294 |
-
|
| 295 |
-
"published_at": proc_post["published_at_iso"]
|
| 296 |
})
|
| 297 |
logging.info(f"Compiled {len(detailed_post_list)} detailed posts.")
|
| 298 |
return detailed_post_list
|
|
@@ -306,48 +382,268 @@ def prepare_data_for_bubble(detailed_posts, all_actual_comments_data):
|
|
| 306 |
"""
|
| 307 |
li_posts = []
|
| 308 |
li_post_stats = []
|
| 309 |
-
li_post_comments = []
|
| 310 |
-
logging.info("Preparing data for Bubble.")
|
| 311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
for post_data in detailed_posts:
|
| 313 |
-
# Data for LI_post table in Bubble
|
| 314 |
li_posts.append({
|
| 315 |
"organization_urn": post_data["organization_urn"],
|
| 316 |
-
"id": post_data["id"],
|
| 317 |
-
"is_ad":
|
| 318 |
-
|
| 319 |
-
"published_at": post_data["published_at"],
|
| 320 |
-
"sentiment": post_data["sentiment"],
|
| 321 |
-
"text": post_data["raw_text"],
|
| 322 |
-
|
| 323 |
-
"li_eb_label": post_data["category"]
|
| 324 |
-
# Add any other fields from post_data needed for LI_post table
|
| 325 |
})
|
| 326 |
|
| 327 |
-
# Data for LI_post_stats table in Bubble
|
| 328 |
li_post_stats.append({
|
| 329 |
"clickCount": post_data["clicks"],
|
| 330 |
-
"commentCount": post_data["comments_stat_count"],
|
| 331 |
-
"engagement": post_data["
|
| 332 |
"impressionCount": post_data["impressions"],
|
| 333 |
"likeCount": post_data["likes"],
|
| 334 |
"shareCount": post_data["shares"],
|
| 335 |
"uniqueImpressionsCount": post_data["uniqueImpressionsCount"],
|
| 336 |
-
"post_id": post_data["id"],
|
| 337 |
-
"organization_urn":
|
| 338 |
})
|
| 339 |
|
| 340 |
-
# Data for LI_post_comments table in Bubble (individual comments)
|
| 341 |
-
# This iterates through the actual comments fetched, not just the count.
|
| 342 |
for post_urn, comments_text_list in all_actual_comments_data.items():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
for single_comment_text in comments_text_list:
|
| 344 |
-
if single_comment_text and single_comment_text.strip():
|
| 345 |
li_post_comments.append({
|
| 346 |
"comment_text": single_comment_text,
|
| 347 |
-
"post_id": post_urn,
|
| 348 |
-
"organization_urn":
|
| 349 |
-
# Could add sentiment per comment here if analyzed at that granularity
|
| 350 |
})
|
| 351 |
|
| 352 |
logging.info(f"Prepared {len(li_posts)} posts, {len(li_post_stats)} stats entries, and {len(li_post_comments)} comments for Bubble.")
|
| 353 |
-
return li_posts, li_post_stats, li_post_comments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import json
|
| 2 |
import requests
|
| 3 |
import html
|
| 4 |
+
import time # Added for potential rate limiting if needed
|
| 5 |
from datetime import datetime
|
| 6 |
from collections import defaultdict
|
| 7 |
+
from urllib.parse import quote # Added for URL encoding
|
| 8 |
from transformers import pipeline
|
| 9 |
|
| 10 |
from sessions import create_session
|
|
|
|
| 16 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 17 |
|
| 18 |
API_V2_BASE = 'https://api.linkedin.com/v2'
|
| 19 |
+
API_REST_BASE = "https://api.linkedin.com/rest"
|
| 20 |
|
| 21 |
+
# Initialize sentiment pipeline (loaded once globally)
|
| 22 |
sentiment_pipeline = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
|
| 23 |
|
| 24 |
+
# --- Utility Function ---
|
| 25 |
+
def extract_text_from_mention_commentary(commentary):
|
| 26 |
+
"""
|
| 27 |
+
Extracts clean text from a commentary string, removing potential placeholders like {mention}.
|
| 28 |
+
"""
|
| 29 |
+
import re
|
| 30 |
+
if not commentary:
|
| 31 |
+
return ""
|
| 32 |
+
return re.sub(r"{.*?}", "", commentary).strip()
|
| 33 |
+
|
| 34 |
+
# --- Core Sentiment Analysis Helper ---
|
| 35 |
+
def _get_sentiment_from_text(text_to_analyze):
|
| 36 |
+
"""
|
| 37 |
+
Analyzes a single piece of text and returns its sentiment label and raw counts.
|
| 38 |
+
Returns a dict: {"label": "Sentiment Label", "counts": defaultdict(int)}
|
| 39 |
+
"""
|
| 40 |
+
sentiment_counts = defaultdict(int)
|
| 41 |
+
dominant_sentiment_label = "Neutral 😐" # Default
|
| 42 |
+
|
| 43 |
+
if not text_to_analyze or not text_to_analyze.strip():
|
| 44 |
+
return {"label": dominant_sentiment_label, "counts": sentiment_counts}
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
# Truncate to avoid issues with very long texts for the model
|
| 48 |
+
analysis_result = sentiment_pipeline(str(text_to_analyze)[:512])
|
| 49 |
+
label = analysis_result[0]['label'].upper()
|
| 50 |
+
|
| 51 |
+
if label in ['POSITIVE', 'VERY POSITIVE']:
|
| 52 |
+
dominant_sentiment_label = 'Positive 👍'
|
| 53 |
+
sentiment_counts['Positive 👍'] += 1
|
| 54 |
+
elif label in ['NEGATIVE', 'VERY NEGATIVE']:
|
| 55 |
+
dominant_sentiment_label = 'Negative 👎'
|
| 56 |
+
sentiment_counts['Negative 👎'] += 1
|
| 57 |
+
elif label == 'NEUTRAL':
|
| 58 |
+
dominant_sentiment_label = 'Neutral 😐' # Already default, but for clarity
|
| 59 |
+
sentiment_counts['Neutral 😐'] += 1
|
| 60 |
+
else:
|
| 61 |
+
dominant_sentiment_label = 'Unknown' # Catch any other labels from the model
|
| 62 |
+
sentiment_counts['Unknown'] += 1
|
| 63 |
+
|
| 64 |
+
except Exception as e:
|
| 65 |
+
# Log the error with more context if possible
|
| 66 |
+
logging.error(f"Sentiment analysis failed for text snippet '{str(text_to_analyze)[:50]}...'. Error: {e}")
|
| 67 |
+
sentiment_counts['Error'] += 1
|
| 68 |
+
dominant_sentiment_label = "Error" # Indicate error in sentiment
|
| 69 |
+
|
| 70 |
+
return {"label": dominant_sentiment_label, "counts": sentiment_counts}
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# --- Post Retrieval Functions ---
|
| 74 |
def fetch_linkedin_posts_core(comm_client_id, community_token, org_urn, count):
|
| 75 |
"""
|
| 76 |
Fetches raw posts, their basic statistics, and performs summarization/categorization.
|
| 77 |
+
Does NOT fetch comments or analyze sentiment of comments here.
|
| 78 |
"""
|
| 79 |
token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
|
| 80 |
session = create_session(comm_client_id, token=token_dict)
|
| 81 |
+
session.headers.update({
|
| 82 |
+
"X-Restli-Protocol-Version": "2.0.0",
|
| 83 |
+
"LinkedIn-Version": "202402"
|
| 84 |
+
})
|
| 85 |
|
| 86 |
posts_url = f"{API_REST_BASE}/posts?author={org_urn}&q=author&count={count}&sortBy=LAST_MODIFIED"
|
| 87 |
logging.info(f"Fetching posts from URL: {posts_url}")
|
|
|
|
| 92 |
logging.info(f"Fetched {len(raw_posts_api)} raw posts from API.")
|
| 93 |
except requests.exceptions.RequestException as e:
|
| 94 |
status = getattr(e.response, 'status_code', 'N/A')
|
| 95 |
+
text = getattr(e.response, 'text', 'No response text')
|
| 96 |
+
logging.error(f"Failed to fetch posts (Status: {status}): {e}. Response: {text}")
|
| 97 |
raise ValueError(f"Failed to fetch posts (Status: {status})") from e
|
| 98 |
+
except json.JSONDecodeError as e:
|
| 99 |
+
logging.error(f"Failed to decode JSON from posts response: {e}. Response text: {resp.text if resp else 'No response object'}")
|
| 100 |
+
raise ValueError("Failed to decode JSON from posts response") from e
|
| 101 |
|
| 102 |
if not raw_posts_api:
|
| 103 |
logging.info("No raw posts found.")
|
| 104 |
+
return [], {}, "DefaultOrgName"
|
| 105 |
|
|
|
|
|
|
|
| 106 |
post_urns_for_stats = [p["id"] for p in raw_posts_api if p.get("id")]
|
| 107 |
|
|
|
|
|
|
|
| 108 |
post_texts_for_nlp = []
|
| 109 |
for p in raw_posts_api:
|
| 110 |
text_content = p.get("commentary") or \
|
|
|
|
| 112 |
"[No text content]"
|
| 113 |
post_texts_for_nlp.append({"text": text_content, "id": p.get("id")})
|
| 114 |
|
| 115 |
+
logging.info(f"Prepared {len(post_texts_for_nlp)} posts for NLP (summarization/classification).")
|
| 116 |
+
if 'batch_summarize_and_classify' in globals():
|
| 117 |
+
structured_results_list = batch_summarize_and_classify(post_texts_for_nlp)
|
| 118 |
+
else:
|
| 119 |
+
logging.warning("batch_summarize_and_classify not found, using fallback.")
|
| 120 |
+
structured_results_list = [{"id": p["id"], "summary": "N/A", "category": "N/A"} for p in post_texts_for_nlp]
|
| 121 |
|
| 122 |
+
structured_results_map = {res["id"]: res for res in structured_results_list if "id" in res}
|
| 123 |
|
|
|
|
| 124 |
stats_map = {}
|
| 125 |
if post_urns_for_stats:
|
| 126 |
+
batch_size_stats = 20
|
| 127 |
+
for i in range(0, len(post_urns_for_stats), batch_size_stats):
|
| 128 |
+
batch_urns = post_urns_for_stats[i:i+batch_size_stats]
|
| 129 |
params = {'q': 'organizationalEntity', 'organizationalEntity': org_urn}
|
| 130 |
+
share_idx = 0
|
| 131 |
+
ugc_idx = 0
|
| 132 |
+
for urn_str in batch_urns:
|
| 133 |
+
if ":share:" in urn_str:
|
| 134 |
+
params[f"shares[{share_idx}]"] = urn_str
|
| 135 |
+
share_idx += 1
|
| 136 |
+
elif ":ugcPost:" in urn_str:
|
| 137 |
+
params[f"ugcPosts[{ugc_idx}]"] = urn_str
|
| 138 |
+
ugc_idx += 1
|
| 139 |
+
else:
|
| 140 |
+
logging.warning(f"URN {urn_str} is not a recognized share or ugcPost type for stats. Skipping.")
|
| 141 |
+
continue
|
| 142 |
|
| 143 |
+
if not share_idx and not ugc_idx:
|
| 144 |
+
continue
|
| 145 |
+
|
| 146 |
try:
|
| 147 |
+
logging.info(f"Fetching stats for batch of {len(batch_urns)} URNs starting with URN: {batch_urns[0]}")
|
| 148 |
stat_resp = session.get(f"{API_REST_BASE}/organizationalEntityShareStatistics", params=params)
|
| 149 |
stat_resp.raise_for_status()
|
| 150 |
+
stats_data = stat_resp.json()
|
| 151 |
+
for urn_key, stat_element_values in stats_data.get("results", {}).items():
|
| 152 |
+
stats_map[urn_key] = stat_element_values.get("totalShareStatistics", {})
|
| 153 |
+
|
| 154 |
+
if stats_data.get("errors"):
|
| 155 |
+
for urn_errored, error_detail in stats_data.get("errors", {}).items():
|
| 156 |
+
logging.warning(f"Error fetching stats for URN {urn_errored}: {error_detail.get('message', 'Unknown error')}")
|
| 157 |
+
|
| 158 |
+
logging.info(f"Successfully processed stats response for {len(batch_urns)} URNs. Current stats_map size: {len(stats_map)}")
|
| 159 |
except requests.exceptions.RequestException as e:
|
| 160 |
+
status_code = getattr(e.response, 'status_code', 'N/A')
|
| 161 |
+
response_text = getattr(e.response, 'text', 'No response text')
|
| 162 |
+
logging.warning(f"Failed to fetch stats for a batch (Status: {status_code}): {e}. Params: {params}. Response: {response_text}")
|
| 163 |
except json.JSONDecodeError as e:
|
| 164 |
logging.warning(f"Failed to decode JSON from stats response: {e}. Response: {stat_resp.text if stat_resp else 'No response text'}")
|
| 165 |
|
|
|
|
| 166 |
processed_raw_posts = []
|
| 167 |
for p in raw_posts_api:
|
| 168 |
post_id = p.get("id")
|
|
|
|
| 174 |
p.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text", "") or \
|
| 175 |
"[No text content]"
|
| 176 |
|
| 177 |
+
timestamp = p.get("publishedAt") or p.get("createdAt") or p.get("firstPublishedAt")
|
| 178 |
published_at_iso = datetime.fromtimestamp(timestamp / 1000).isoformat() if timestamp else None
|
| 179 |
|
| 180 |
structured_res = structured_results_map.get(post_id, {"summary": "N/A", "category": "N/A"})
|
|
|
|
| 186 |
"category": structured_res["category"],
|
| 187 |
"published_at_timestamp": timestamp,
|
| 188 |
"published_at_iso": published_at_iso,
|
| 189 |
+
"organization_urn": p.get("author", f"urn:li:organization:{org_urn.split(':')[-1]}"),
|
| 190 |
+
"is_ad": 'adContext' in p,
|
| 191 |
+
"media_category": p.get("content",{}).get("com.linkedin.voyager.feed.render.LinkedInVideoComponent",{}).get("mediaCategory") or \
|
| 192 |
+
p.get("content",{}).get("com.linkedin.voyager.feed.render.ImageComponent",{}).get("mediaCategory") or \
|
| 193 |
+
p.get("content",{}).get("com.linkedin.voyager.feed.render.ArticleComponent",{}).get("mediaCategory") or "NONE"
|
| 194 |
})
|
| 195 |
logging.info(f"Processed {len(processed_raw_posts)} posts with core data.")
|
| 196 |
+
return processed_raw_posts, stats_map, "DefaultOrgName"
|
| 197 |
|
| 198 |
|
| 199 |
+
def fetch_comments(comm_client_id, community_token, post_urns, stats_map):
|
| 200 |
"""
|
| 201 |
Fetches comments for a list of post URNs.
|
| 202 |
Uses stats_map to potentially skip posts with 0 comments.
|
| 203 |
"""
|
| 204 |
+
token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
|
| 205 |
+
linkedin_session = create_session(comm_client_id, token=token_dict)
|
| 206 |
+
linkedin_session.headers.update({
|
| 207 |
+
'LinkedIn-Version': "202402",
|
| 208 |
+
"X-Restli-Protocol-Version": "2.0.0"
|
| 209 |
+
})
|
|
|
|
| 210 |
|
| 211 |
all_comments_by_post = {}
|
| 212 |
logging.info(f"Fetching comments for {len(post_urns)} posts.")
|
| 213 |
|
| 214 |
for post_urn in post_urns:
|
| 215 |
+
post_stats = stats_map.get(post_urn, {})
|
| 216 |
+
comment_count_from_stats = post_stats.get("commentSummary", {}).get("totalComments", post_stats.get('commentCount', 0))
|
| 217 |
+
|
| 218 |
+
if comment_count_from_stats == 0:
|
| 219 |
logging.info(f"Skipping comment fetch for {post_urn} as commentCount is 0 in stats_map.")
|
| 220 |
all_comments_by_post[post_urn] = []
|
| 221 |
continue
|
| 222 |
|
| 223 |
try:
|
| 224 |
+
encoded_post_urn = quote(post_urn, safe='')
|
| 225 |
+
url = f"{API_REST_BASE}/comments?q=entity&entityUrn={encoded_post_urn}&sortOrder=CHRONOLOGICAL"
|
| 226 |
+
|
|
|
|
| 227 |
logging.debug(f"Fetching comments from URL: {url} for post URN: {post_urn}")
|
| 228 |
response = linkedin_session.get(url)
|
| 229 |
|
| 230 |
if response.status_code == 200:
|
| 231 |
elements = response.json().get('elements', [])
|
| 232 |
+
comments_texts = []
|
| 233 |
+
for c in elements:
|
| 234 |
+
comment_text = c.get('message', {}).get('text')
|
| 235 |
+
if comment_text:
|
| 236 |
+
comments_texts.append(comment_text)
|
| 237 |
all_comments_by_post[post_urn] = comments_texts
|
| 238 |
logging.info(f"Fetched {len(comments_texts)} comments for {post_urn}.")
|
| 239 |
+
elif response.status_code == 403:
|
| 240 |
+
logging.warning(f"Forbidden (403) to fetch comments for {post_urn}. URL: {url}. Response: {response.text}. Check permissions or API version.")
|
| 241 |
all_comments_by_post[post_urn] = []
|
| 242 |
+
elif response.status_code == 404:
|
| 243 |
logging.warning(f"Comments not found (404) for {post_urn}. URL: {url}. Response: {response.text}")
|
| 244 |
all_comments_by_post[post_urn] = []
|
| 245 |
else:
|
| 246 |
+
logging.error(f"Error fetching comments for {post_urn}. Status: {response.status_code}. URL: {url}. Response: {response.text}")
|
| 247 |
all_comments_by_post[post_urn] = []
|
| 248 |
except requests.exceptions.RequestException as e:
|
| 249 |
logging.error(f"RequestException fetching comments for {post_urn}: {e}")
|
| 250 |
all_comments_by_post[post_urn] = []
|
| 251 |
+
except json.JSONDecodeError as e:
|
| 252 |
+
logging.error(f"JSONDecodeError fetching comments for {post_urn}. Response: {response.text if 'response' in locals() else 'N/A'}. Error: {e}")
|
| 253 |
+
all_comments_by_post[post_urn] = []
|
| 254 |
+
except Exception as e:
|
| 255 |
logging.error(f"Unexpected error fetching comments for {post_urn}: {e}")
|
| 256 |
all_comments_by_post[post_urn] = []
|
| 257 |
|
|
|
|
| 259 |
|
| 260 |
def analyze_sentiment(all_comments_data):
|
| 261 |
"""
|
| 262 |
+
Analyzes sentiment for comments grouped by post_urn using the helper function.
|
| 263 |
all_comments_data is a dict: {post_urn: [comment_text_1, comment_text_2,...]}
|
| 264 |
+
Returns a dict: {post_urn: {"sentiment": "DominantOverallSentiment", "percentage": X.X, "details": {aggregated_counts}}}
|
| 265 |
"""
|
| 266 |
results_by_post = {}
|
| 267 |
+
logging.info(f"Analyzing aggregated sentiment for comments from {len(all_comments_data)} posts.")
|
| 268 |
for post_urn, comments_list in all_comments_data.items():
|
| 269 |
+
aggregated_sentiment_counts = defaultdict(int)
|
| 270 |
total_valid_comments_for_post = 0
|
| 271 |
|
| 272 |
if not comments_list:
|
| 273 |
+
results_by_post[post_urn] = {"sentiment": "Neutral 😐", "percentage": 0.0, "details": dict(aggregated_sentiment_counts)}
|
| 274 |
continue
|
| 275 |
|
| 276 |
for comment_text in comments_list:
|
| 277 |
+
if not comment_text or not comment_text.strip():
|
| 278 |
continue
|
| 279 |
+
|
| 280 |
+
# Use the helper for individual comment sentiment
|
| 281 |
+
single_comment_sentiment = _get_sentiment_from_text(comment_text)
|
| 282 |
+
|
| 283 |
+
# Aggregate counts
|
| 284 |
+
for label, count in single_comment_sentiment["counts"].items():
|
| 285 |
+
aggregated_sentiment_counts[label] += count
|
| 286 |
+
|
| 287 |
+
if single_comment_sentiment["label"] != "Error": # Count valid analyses
|
| 288 |
+
total_valid_comments_for_post +=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
+
dominant_overall_sentiment = "Neutral 😐" # Default
|
| 291 |
+
percentage = 0.0
|
| 292 |
+
|
| 293 |
if total_valid_comments_for_post > 0:
|
| 294 |
+
# Determine dominant sentiment from aggregated_sentiment_counts
|
| 295 |
+
# Exclude 'Error' from being a dominant sentiment unless it's the only category with counts
|
| 296 |
+
valid_sentiments = {k: v for k, v in aggregated_sentiment_counts.items() if k != 'Error' and v > 0}
|
| 297 |
+
if not valid_sentiments:
|
| 298 |
+
dominant_overall_sentiment = 'Error' if aggregated_sentiment_counts['Error'] > 0 else 'Neutral 😐'
|
| 299 |
+
else:
|
| 300 |
+
# Simple max count logic for dominance
|
| 301 |
+
dominant_overall_sentiment = max(valid_sentiments, key=valid_sentiments.get)
|
| 302 |
+
|
| 303 |
+
if dominant_overall_sentiment != 'Error':
|
| 304 |
+
percentage = round((aggregated_sentiment_counts[dominant_overall_sentiment] / total_valid_comments_for_post) * 100, 1)
|
| 305 |
+
else: # if dominant is 'Error' or only errors were found
|
| 306 |
+
percentage = 0.0
|
| 307 |
+
elif aggregated_sentiment_counts['Error'] > 0 : # No valid comments, but errors occurred
|
| 308 |
+
dominant_overall_sentiment = 'Error'
|
| 309 |
+
|
| 310 |
|
| 311 |
results_by_post[post_urn] = {
|
| 312 |
+
"sentiment": dominant_overall_sentiment,
|
| 313 |
"percentage": percentage,
|
| 314 |
+
"details": dict(aggregated_sentiment_counts) # Store aggregated counts
|
| 315 |
}
|
| 316 |
+
logging.debug(f"Aggregated sentiment for post {post_urn}: {results_by_post[post_urn]}")
|
| 317 |
+
|
| 318 |
return results_by_post
|
| 319 |
|
| 320 |
|
| 321 |
def compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post):
|
| 322 |
"""
|
| 323 |
+
Combines processed raw post data with their statistics and overall comment sentiment.
|
| 324 |
"""
|
| 325 |
detailed_post_list = []
|
| 326 |
logging.info(f"Compiling detailed data for {len(processed_raw_posts)} posts.")
|
|
|
|
| 329 |
stats = stats_map.get(post_id, {})
|
| 330 |
|
| 331 |
likes = stats.get("likeCount", 0)
|
| 332 |
+
comments_stat_count = stats.get("commentSummary", {}).get("totalComments", stats.get("commentCount", 0))
|
|
|
|
|
|
|
| 333 |
|
| 334 |
clicks = stats.get("clickCount", 0)
|
| 335 |
shares = stats.get("shareCount", 0)
|
| 336 |
impressions = stats.get("impressionCount", 0)
|
| 337 |
+
unique_impressions = stats.get("uniqueImpressionsCount", stats.get("impressionCount", 0))
|
| 338 |
|
|
|
|
|
|
|
| 339 |
engagement_numerator = likes + comments_stat_count + clicks + shares
|
| 340 |
+
engagement_rate = (engagement_numerator / impressions * 100) if impressions and impressions > 0 else 0.0
|
| 341 |
|
| 342 |
+
sentiment_info = sentiments_per_post.get(post_id, {"sentiment": "Neutral 😐", "percentage": 0.0, "details": {}})
|
| 343 |
|
|
|
|
| 344 |
display_text = html.escape(proc_post["raw_text"][:250]).replace("\n", "<br>") + \
|
| 345 |
("..." if len(proc_post["raw_text"]) > 250 else "")
|
| 346 |
|
|
|
|
| 350 |
detailed_post_list.append({
|
| 351 |
"id": post_id,
|
| 352 |
"when": when_formatted,
|
| 353 |
+
"text_for_display": display_text,
|
| 354 |
+
"raw_text": proc_post["raw_text"],
|
| 355 |
"likes": likes,
|
| 356 |
+
"comments_stat_count": comments_stat_count,
|
| 357 |
"clicks": clicks,
|
| 358 |
"shares": shares,
|
| 359 |
"impressions": impressions,
|
| 360 |
"uniqueImpressionsCount": unique_impressions,
|
| 361 |
+
"engagement": f"{engagement_rate:.2f}%",
|
| 362 |
+
"engagement_raw": engagement_rate,
|
| 363 |
"sentiment": sentiment_info["sentiment"],
|
| 364 |
"sentiment_percent": sentiment_info["percentage"],
|
| 365 |
+
"sentiment_details": sentiment_info.get("details", {}),
|
| 366 |
"summary": proc_post["summary"],
|
| 367 |
"category": proc_post["category"],
|
| 368 |
"organization_urn": proc_post["organization_urn"],
|
| 369 |
+
"is_ad": proc_post["is_ad"],
|
| 370 |
+
"media_category": proc_post.get("media_category", "NONE"),
|
| 371 |
+
"published_at": proc_post["published_at_iso"]
|
| 372 |
})
|
| 373 |
logging.info(f"Compiled {len(detailed_post_list)} detailed posts.")
|
| 374 |
return detailed_post_list
|
|
|
|
| 382 |
"""
|
| 383 |
li_posts = []
|
| 384 |
li_post_stats = []
|
| 385 |
+
li_post_comments = []
|
| 386 |
+
logging.info("Preparing posts data for Bubble.")
|
| 387 |
+
|
| 388 |
+
if not detailed_posts:
|
| 389 |
+
logging.warning("No detailed posts to prepare for Bubble.")
|
| 390 |
+
return [], [], []
|
| 391 |
+
|
| 392 |
+
org_urn_default = detailed_posts[0]["organization_urn"] if detailed_posts else "urn:li:organization:UNKNOWN"
|
| 393 |
+
|
| 394 |
for post_data in detailed_posts:
|
|
|
|
| 395 |
li_posts.append({
|
| 396 |
"organization_urn": post_data["organization_urn"],
|
| 397 |
+
"id": post_data["id"],
|
| 398 |
+
"is_ad": post_data["is_ad"],
|
| 399 |
+
"media_category": post_data.get("media_category", "NONE"),
|
| 400 |
+
"published_at": post_data["published_at"],
|
| 401 |
+
"sentiment": post_data["sentiment"],
|
| 402 |
+
"text": post_data["raw_text"],
|
| 403 |
+
"summary_text": post_data["summary"],
|
| 404 |
+
"li_eb_label": post_data["category"]
|
|
|
|
| 405 |
})
|
| 406 |
|
|
|
|
| 407 |
li_post_stats.append({
|
| 408 |
"clickCount": post_data["clicks"],
|
| 409 |
+
"commentCount": post_data["comments_stat_count"],
|
| 410 |
+
"engagement": post_data["engagement_raw"],
|
| 411 |
"impressionCount": post_data["impressions"],
|
| 412 |
"likeCount": post_data["likes"],
|
| 413 |
"shareCount": post_data["shares"],
|
| 414 |
"uniqueImpressionsCount": post_data["uniqueImpressionsCount"],
|
| 415 |
+
"post_id": post_data["id"],
|
| 416 |
+
"organization_urn": post_data["organization_urn"]
|
| 417 |
})
|
| 418 |
|
|
|
|
|
|
|
| 419 |
for post_urn, comments_text_list in all_actual_comments_data.items():
|
| 420 |
+
current_post_org_urn = org_urn_default
|
| 421 |
+
for p in detailed_posts:
|
| 422 |
+
if p["id"] == post_urn:
|
| 423 |
+
current_post_org_urn = p["organization_urn"]
|
| 424 |
+
break
|
| 425 |
+
|
| 426 |
for single_comment_text in comments_text_list:
|
| 427 |
+
if single_comment_text and single_comment_text.strip():
|
| 428 |
li_post_comments.append({
|
| 429 |
"comment_text": single_comment_text,
|
| 430 |
+
"post_id": post_urn,
|
| 431 |
+
"organization_urn": current_post_org_urn
|
|
|
|
| 432 |
})
|
| 433 |
|
| 434 |
logging.info(f"Prepared {len(li_posts)} posts, {len(li_post_stats)} stats entries, and {len(li_post_comments)} comments for Bubble.")
|
| 435 |
+
return li_posts, li_post_stats, li_post_comments
|
| 436 |
+
|
| 437 |
+
# --- Mentions Retrieval Functions ---
|
| 438 |
+
|
| 439 |
+
def fetch_linkedin_mentions_core(comm_client_id, community_token, org_urn, count=20):
|
| 440 |
+
"""
|
| 441 |
+
Fetches raw mention notifications and the details of the posts where the organization was mentioned.
|
| 442 |
+
Returns a list of processed mention data (internal structure).
|
| 443 |
+
"""
|
| 444 |
+
token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
|
| 445 |
+
session = create_session(comm_client_id, token=token_dict)
|
| 446 |
+
session.headers.update({
|
| 447 |
+
"X-Restli-Protocol-Version": "2.0.0",
|
| 448 |
+
"LinkedIn-Version": "202402"
|
| 449 |
+
})
|
| 450 |
+
|
| 451 |
+
encoded_org_urn = quote(org_urn, safe='')
|
| 452 |
+
|
| 453 |
+
notifications_url_base = (
|
| 454 |
+
f"{API_REST_BASE}/organizationalEntityNotifications"
|
| 455 |
+
f"?q=criteria"
|
| 456 |
+
f"&actions=List(SHARE_MENTION)"
|
| 457 |
+
f"&organizationalEntity={encoded_org_urn}"
|
| 458 |
+
f"&count={count}"
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
all_notifications = []
|
| 462 |
+
start_index = 0
|
| 463 |
+
processed_mentions_internal = []
|
| 464 |
+
page_count = 0
|
| 465 |
+
max_pages = 10
|
| 466 |
+
|
| 467 |
+
while page_count < max_pages:
|
| 468 |
+
current_url = f"{notifications_url_base}&start={start_index}"
|
| 469 |
+
logging.info(f"Fetching notifications page {page_count + 1} from URL: {current_url}")
|
| 470 |
+
try:
|
| 471 |
+
resp = session.get(current_url)
|
| 472 |
+
resp.raise_for_status()
|
| 473 |
+
data = resp.json()
|
| 474 |
+
elements = data.get("elements", [])
|
| 475 |
+
|
| 476 |
+
if not elements:
|
| 477 |
+
logging.info(f"No more notifications found on page {page_count + 1}. Total notifications fetched: {len(all_notifications)}.")
|
| 478 |
+
break
|
| 479 |
+
|
| 480 |
+
all_notifications.extend(elements)
|
| 481 |
+
|
| 482 |
+
paging = data.get("paging", {})
|
| 483 |
+
if 'start' not in paging or 'count' not in paging or len(elements) < paging.get('count', count):
|
| 484 |
+
logging.info(f"Last page of notifications fetched. Total notifications: {len(all_notifications)}.")
|
| 485 |
+
break
|
| 486 |
+
|
| 487 |
+
start_index = paging['start'] + paging['count']
|
| 488 |
+
page_count += 1
|
| 489 |
+
|
| 490 |
+
except requests.exceptions.RequestException as e:
|
| 491 |
+
status = getattr(e.response, 'status_code', 'N/A')
|
| 492 |
+
text = getattr(e.response, 'text', 'No response text')
|
| 493 |
+
logging.error(f"Failed to fetch notifications (Status: {status}): {e}. Response: {text}")
|
| 494 |
+
break
|
| 495 |
+
except json.JSONDecodeError as e:
|
| 496 |
+
logging.error(f"Failed to decode JSON from notifications response: {e}. Response: {resp.text if resp else 'No resp obj'}")
|
| 497 |
+
break
|
| 498 |
+
if page_count >= max_pages:
|
| 499 |
+
logging.info(f"Reached max_pages ({max_pages}) for fetching notifications.")
|
| 500 |
+
break
|
| 501 |
+
|
| 502 |
+
if not all_notifications:
|
| 503 |
+
logging.info("No mention notifications found after fetching.")
|
| 504 |
+
return []
|
| 505 |
+
|
| 506 |
+
mention_share_urns = list(set([
|
| 507 |
+
n.get("generatedActivity") for n in all_notifications
|
| 508 |
+
if n.get("action") == "SHARE_MENTION" and n.get("generatedActivity")
|
| 509 |
+
]))
|
| 510 |
+
|
| 511 |
+
logging.info(f"Found {len(mention_share_urns)} unique share URNs from SHARE_MENTION notifications.")
|
| 512 |
+
|
| 513 |
+
for share_urn in mention_share_urns:
|
| 514 |
+
encoded_share_urn = quote(share_urn, safe='')
|
| 515 |
+
post_detail_url = f"{API_REST_BASE}/posts/{encoded_share_urn}"
|
| 516 |
+
logging.info(f"Fetching details for mentioned post: {post_detail_url}")
|
| 517 |
+
try:
|
| 518 |
+
post_resp = session.get(post_detail_url)
|
| 519 |
+
post_resp.raise_for_status()
|
| 520 |
+
post_data = post_resp.json()
|
| 521 |
+
|
| 522 |
+
commentary_raw = post_data.get("commentary")
|
| 523 |
+
if not commentary_raw and "specificContent" in post_data:
|
| 524 |
+
share_content = post_data.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {})
|
| 525 |
+
commentary_raw = share_content.get("shareCommentaryV2", {}).get("text", "")
|
| 526 |
+
|
| 527 |
+
if not commentary_raw:
|
| 528 |
+
logging.warning(f"No commentary found for share URN {share_urn}. Skipping.")
|
| 529 |
+
continue
|
| 530 |
+
|
| 531 |
+
mention_text_cleaned = extract_text_from_mention_commentary(commentary_raw)
|
| 532 |
+
timestamp = post_data.get("publishedAt") or post_data.get("createdAt") or post_data.get("firstPublishedAt")
|
| 533 |
+
published_at_iso = datetime.fromtimestamp(timestamp / 1000).isoformat() if timestamp else None
|
| 534 |
+
author_urn = post_data.get("author", "urn:li:unknown")
|
| 535 |
+
|
| 536 |
+
processed_mentions_internal.append({
|
| 537 |
+
"mention_id": f"mention_{share_urn}",
|
| 538 |
+
"share_urn": share_urn,
|
| 539 |
+
"mention_text_raw": commentary_raw,
|
| 540 |
+
"mention_text_cleaned": mention_text_cleaned,
|
| 541 |
+
"published_at_timestamp": timestamp,
|
| 542 |
+
"published_at_iso": published_at_iso,
|
| 543 |
+
"mentioned_by_author_urn": author_urn,
|
| 544 |
+
"organization_urn_mentioned": org_urn
|
| 545 |
+
})
|
| 546 |
+
except requests.exceptions.RequestException as e:
|
| 547 |
+
status = getattr(e.response, 'status_code', 'N/A')
|
| 548 |
+
text = getattr(e.response, 'text', 'No response text')
|
| 549 |
+
logging.warning(f"Failed to fetch post details for share URN {share_urn} (Status: {status}): {e}. Response: {text}")
|
| 550 |
+
except json.JSONDecodeError as e:
|
| 551 |
+
logging.warning(f"Failed to decode JSON for post details {share_urn}: {e}. Response: {post_resp.text if post_resp else 'No resp obj'}")
|
| 552 |
+
|
| 553 |
+
logging.info(f"Processed {len(processed_mentions_internal)} mentions with their post details.")
|
| 554 |
+
return processed_mentions_internal
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
def analyze_mentions_sentiment(processed_mentions_list):
|
| 558 |
+
"""
|
| 559 |
+
Analyzes sentiment for the text of each processed mention using the helper function.
|
| 560 |
+
Input: list of processed_mention dicts (internal structure from fetch_linkedin_mentions_core).
|
| 561 |
+
Returns: a dict {mention_id: {"sentiment_label": "DominantSentiment", "percentage": 100.0, "details": {counts}}}
|
| 562 |
+
"""
|
| 563 |
+
mention_sentiments_map = {}
|
| 564 |
+
logging.info(f"Analyzing individual sentiment for {len(processed_mentions_list)} mentions.")
|
| 565 |
+
|
| 566 |
+
for mention_data in processed_mentions_list:
|
| 567 |
+
mention_internal_id = mention_data["mention_id"] # Internal ID from fetch_linkedin_mentions_core
|
| 568 |
+
text_to_analyze = mention_data.get("mention_text_cleaned", "")
|
| 569 |
+
|
| 570 |
+
sentiment_result = _get_sentiment_from_text(text_to_analyze)
|
| 571 |
+
|
| 572 |
+
# For single text, percentage is 100% for the dominant label if not error
|
| 573 |
+
percentage = 0.0
|
| 574 |
+
if sentiment_result["label"] != "Error" and any(sentiment_result["counts"].values()):
|
| 575 |
+
percentage = 100.0
|
| 576 |
+
|
| 577 |
+
mention_sentiments_map[mention_internal_id] = {
|
| 578 |
+
"sentiment_label": sentiment_result["label"], # The dominant sentiment label
|
| 579 |
+
"percentage": percentage,
|
| 580 |
+
"details": dict(sentiment_result["counts"]) # Raw counts for this specific mention
|
| 581 |
+
}
|
| 582 |
+
logging.debug(f"Individual sentiment for mention {mention_internal_id}: {mention_sentiments_map[mention_internal_id]}")
|
| 583 |
+
|
| 584 |
+
return mention_sentiments_map
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
def compile_detailed_mentions(processed_mentions_list, mention_sentiments_map):
|
| 588 |
+
"""
|
| 589 |
+
Combines processed mention data (internal structure) with their sentiment analysis
|
| 590 |
+
into the user-specified output format.
|
| 591 |
+
processed_mentions_list: list of dicts from fetch_linkedin_mentions_core
|
| 592 |
+
mention_sentiments_map: dict from analyze_mentions_sentiment, keyed by "mention_id" (internal)
|
| 593 |
+
and contains "sentiment_label".
|
| 594 |
+
"""
|
| 595 |
+
detailed_mentions_output = []
|
| 596 |
+
logging.info(f"Compiling detailed data for {len(processed_mentions_list)} mentions into specified format.")
|
| 597 |
+
|
| 598 |
+
for mention_core_data in processed_mentions_list:
|
| 599 |
+
mention_internal_id = mention_core_data["mention_id"]
|
| 600 |
+
sentiment_info = mention_sentiments_map.get(mention_internal_id, {"sentiment_label": "Neutral 😐"})
|
| 601 |
+
|
| 602 |
+
date_formatted = "Unknown"
|
| 603 |
+
if mention_core_data["published_at_timestamp"]:
|
| 604 |
+
try:
|
| 605 |
+
date_formatted = datetime.fromtimestamp(mention_core_data["published_at_timestamp"] / 1000).strftime("%Y-%m-%d %H:%M")
|
| 606 |
+
except TypeError:
|
| 607 |
+
logging.warning(f"Could not format timestamp for mention_id {mention_internal_id}")
|
| 608 |
+
|
| 609 |
+
detailed_mentions_output.append({
|
| 610 |
+
"date": date_formatted, # User-specified field name
|
| 611 |
+
"id": mention_core_data["share_urn"], # User-specified field name (URN of the post with mention)
|
| 612 |
+
"mention_text": mention_core_data["mention_text_cleaned"], # User-specified field name
|
| 613 |
+
"organization_urn": mention_core_data["organization_urn_mentioned"], # User-specified field name
|
| 614 |
+
"sentiment_label": sentiment_info["sentiment_label"] # User-specified field name
|
| 615 |
+
})
|
| 616 |
+
logging.info(f"Compiled {len(detailed_mentions_output)} detailed mentions with specified fields.")
|
| 617 |
+
return detailed_mentions_output
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
def prepare_mentions_for_bubble(compiled_detailed_mentions_list):
|
| 621 |
+
"""
|
| 622 |
+
Prepares mention data for uploading to a Bubble table.
|
| 623 |
+
The input `compiled_detailed_mentions_list` is already in the user-specified format:
|
| 624 |
+
[{"date": ..., "id": ..., "mention_text": ..., "organization_urn": ..., "sentiment_label": ...}, ...]
|
| 625 |
+
This function directly uses these fields as per user's selection for Bubble upload.
|
| 626 |
+
"""
|
| 627 |
+
li_mentions_bubble = []
|
| 628 |
+
logging.info(f"Preparing {len(compiled_detailed_mentions_list)} compiled mentions for Bubble upload.")
|
| 629 |
+
|
| 630 |
+
if not compiled_detailed_mentions_list:
|
| 631 |
+
return []
|
| 632 |
+
|
| 633 |
+
for mention_data in compiled_detailed_mentions_list:
|
| 634 |
+
# The mention_data dictionary already has the keys:
|
| 635 |
+
# "date", "id", "mention_text", "organization_urn", "sentiment_label"
|
| 636 |
+
# These are used directly for the Bubble upload list.
|
| 637 |
+
li_mentions_bubble.append({
|
| 638 |
+
"date": mention_data["date"],
|
| 639 |
+
"id": mention_data["id"],
|
| 640 |
+
"mention_text": mention_data["mention_text"],
|
| 641 |
+
"organization_urn": mention_data["organization_urn"],
|
| 642 |
+
"sentiment_label": mention_data["sentiment_label"]
|
| 643 |
+
# If Bubble table has different field names, mapping would be done here.
|
| 644 |
+
# Example: "bubble_mention_date": mention_data["date"],
|
| 645 |
+
# For now, using direct mapping as per user's selected code for the append.
|
| 646 |
+
})
|
| 647 |
+
|
| 648 |
+
logging.info(f"Prepared {len(li_mentions_bubble)} mention entries for Bubble, using direct field names from compiled data.")
|
| 649 |
+
return li_mentions_bubble
|