GuglielmoTor commited on
Commit
a11780d
·
verified ·
1 Parent(s): 56e12df

Update analytics_data_processing.py

Browse files
Files changed (1) hide show
  1. analytics_data_processing.py +75 -31
analytics_data_processing.py CHANGED
@@ -1,5 +1,5 @@
1
  import pandas as pd
2
- from datetime import datetime, timedelta, time # Added time for min.time
3
  import logging
4
 
5
  # Configure logging for this module
@@ -23,8 +23,8 @@ def filter_dataframe_by_date(df, date_column, start_date, end_date):
23
  # Drop rows where date conversion might have failed (NaT) or was originally NaT
24
  df_copy.dropna(subset=[date_column], inplace=True)
25
  if df_copy.empty:
26
- logging.info(f"Filter by date: DataFrame empty after to_datetime and dropna for column '{date_column}'.")
27
- return pd.DataFrame()
28
 
29
  # Normalize to midnight. This preserves timezone information if present.
30
  df_copy[date_column] = df_copy[date_column].dt.normalize()
@@ -39,45 +39,55 @@ def filter_dataframe_by_date(df, date_column, start_date, end_date):
39
  logging.error(f"Error processing date column '{date_column}': {e}", exc_info=True)
40
  return pd.DataFrame()
41
 
42
- df_filtered = df_copy # df_copy is now processed and potentially filtered by dropna
43
- # No need for: df_filtered = df_copy.dropna(subset=[date_column]) again here.
44
- if df_filtered.empty: # Check again in case all rows were dropped or some other issue.
45
- logging.info(f"Filter by date: DataFrame became empty after processing date column '{date_column}'.")
46
- return pd.DataFrame()
47
-
48
  # Convert start_date and end_date (which are naive Python datetime or naive Pandas Timestamp)
49
  # to naive pandas Timestamps and normalize them.
50
  start_dt_obj = pd.to_datetime(start_date, errors='coerce').normalize() if start_date else None
51
  end_dt_obj = pd.to_datetime(end_date, errors='coerce').normalize() if end_date else None
52
 
53
  # Perform the filtering
 
54
  if start_dt_obj and end_dt_obj:
55
- return df_filtered[(df_filtered[date_column] >= start_dt_obj) & (df_filtered[date_column] <= end_dt_obj)]
56
  elif start_dt_obj:
57
- return df_filtered[df_filtered[date_column] >= start_dt_obj]
58
  elif end_dt_obj:
59
- return df_filtered[df_filtered[date_column] <= end_dt_obj]
60
- return df_filtered # No date filtering if neither start_date nor end_date is provided
 
 
 
 
 
 
61
 
62
 
63
  def prepare_filtered_analytics_data(token_state_value, date_filter_option, custom_start_date, custom_end_date):
64
  """
65
- Retrieves data from token_state, determines date range, filters posts and mentions.
66
- Returns filtered_posts_df, filtered_mentions_df, follower_stats_df (unfiltered),
67
- and the determined start_dt, end_dt for messaging.
 
 
 
 
 
 
68
  """
69
  logging.info(f"Preparing filtered analytics data. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
70
 
71
- posts_df = token_state_value.get("bubble_posts_df", pd.DataFrame())
72
- mentions_df = token_state_value.get("bubble_mentions_df", pd.DataFrame())
73
- follower_stats_df = token_state_value.get("bubble_follower_stats_df", pd.DataFrame())
 
74
 
75
  date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
76
  date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
 
 
77
 
78
- # Determine date range for filtering posts and mentions
79
  current_datetime_obj = datetime.now()
80
- current_time_normalized = current_datetime_obj.replace(hour=0, minute=0, second=0, microsecond=0) # Naive Python datetime
81
 
82
  end_dt_filter = current_time_normalized
83
  start_dt_filter = None
@@ -87,10 +97,7 @@ def prepare_filtered_analytics_data(token_state_value, date_filter_option, custo
87
  elif date_filter_option == "Last 30 Days":
88
  start_dt_filter = current_time_normalized - timedelta(days=29)
89
  elif date_filter_option == "Custom Range":
90
- # custom_start_date and custom_end_date are strings from gr.DateTime(type="string")
91
- # Convert to pandas Timestamp (which will be naive if input string is naive) then normalize using pandas method
92
  start_dt_filter_temp = pd.to_datetime(custom_start_date, errors='coerce')
93
- # .replace() on pandas Timestamp normalizes time part
94
  start_dt_filter = start_dt_filter_temp.replace(hour=0, minute=0, second=0, microsecond=0) if pd.notna(start_dt_filter_temp) else None
95
 
96
  end_dt_filter_temp = pd.to_datetime(custom_end_date, errors='coerce')
@@ -98,15 +105,52 @@ def prepare_filtered_analytics_data(token_state_value, date_filter_option, custo
98
 
99
  logging.info(f"Date range for filtering: Start: {start_dt_filter}, End: {end_dt_filter}")
100
 
101
- # Filter DataFrames
102
- filtered_posts_data = pd.DataFrame()
103
- if not posts_df.empty:
104
- filtered_posts_data = filter_dataframe_by_date(posts_df, date_column_posts, start_dt_filter, end_dt_filter)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
  filtered_mentions_data = pd.DataFrame()
107
- if not mentions_df.empty:
108
  filtered_mentions_data = filter_dataframe_by_date(mentions_df, date_column_mentions, start_dt_filter, end_dt_filter)
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
- logging.info(f"Processed - Filtered posts: {len(filtered_posts_data)} rows, Filtered Mentions: {len(filtered_mentions_data)} rows.")
111
 
112
- return filtered_posts_data, filtered_mentions_data, follower_stats_df, start_dt_filter, end_dt_filter
 
1
  import pandas as pd
2
+ from datetime import datetime, timedelta, time
3
  import logging
4
 
5
  # Configure logging for this module
 
23
  # Drop rows where date conversion might have failed (NaT) or was originally NaT
24
  df_copy.dropna(subset=[date_column], inplace=True)
25
  if df_copy.empty:
26
+ logging.info(f"Filter by date: DataFrame empty after to_datetime and dropna for column '{date_column}'.")
27
+ return pd.DataFrame()
28
 
29
  # Normalize to midnight. This preserves timezone information if present.
30
  df_copy[date_column] = df_copy[date_column].dt.normalize()
 
39
  logging.error(f"Error processing date column '{date_column}': {e}", exc_info=True)
40
  return pd.DataFrame()
41
 
 
 
 
 
 
 
42
  # Convert start_date and end_date (which are naive Python datetime or naive Pandas Timestamp)
43
  # to naive pandas Timestamps and normalize them.
44
  start_dt_obj = pd.to_datetime(start_date, errors='coerce').normalize() if start_date else None
45
  end_dt_obj = pd.to_datetime(end_date, errors='coerce').normalize() if end_date else None
46
 
47
  # Perform the filtering
48
+ # df_filtered is already df_copy which has NaNs dropped and dates processed
49
  if start_dt_obj and end_dt_obj:
50
+ df_filtered_final = df_copy[(df_copy[date_column] >= start_dt_obj) & (df_copy[date_column] <= end_dt_obj)]
51
  elif start_dt_obj:
52
+ df_filtered_final = df_copy[df_copy[date_column] >= start_dt_obj]
53
  elif end_dt_obj:
54
+ df_filtered_final = df_copy[df_copy[date_column] <= end_dt_obj]
55
+ else:
56
+ df_filtered_final = df_copy # No date filtering if neither start_date nor end_date is provided
57
+
58
+ if df_filtered_final.empty:
59
+ logging.info(f"Filter by date: DataFrame became empty after applying date range to column '{date_column}'.")
60
+
61
+ return df_filtered_final
62
 
63
 
64
  def prepare_filtered_analytics_data(token_state_value, date_filter_option, custom_start_date, custom_end_date):
65
  """
66
+ Retrieves data from token_state, determines date range, filters posts, mentions, and follower time-series data.
67
+ Merges posts with post stats.
68
+ Returns:
69
+ - filtered_merged_posts_df: Posts merged with stats, filtered by date.
70
+ - filtered_mentions_df: Mentions filtered by date.
71
+ - date_filtered_follower_stats_df: Follower stats filtered by date (for time-series plots).
72
+ - raw_follower_stats_df: Unfiltered follower stats (for demographic plots).
73
+ - start_dt_filter: Determined start date for filtering.
74
+ - end_dt_filter: Determined end date for filtering.
75
  """
76
  logging.info(f"Preparing filtered analytics data. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
77
 
78
+ posts_df = token_state_value.get("bubble_posts_df", pd.DataFrame()).copy()
79
+ mentions_df = token_state_value.get("bubble_mentions_df", pd.DataFrame()).copy()
80
+ follower_stats_df = token_state_value.get("bubble_follower_stats_df", pd.DataFrame()).copy()
81
+ post_stats_df = token_state_value.get("bubble_post_stats_df", pd.DataFrame()).copy() # Fetch post_stats_df
82
 
83
  date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
84
  date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
85
+ # Assuming follower_stats_df has a 'date' column for time-series data
86
+ date_column_followers = token_state_value.get("config_date_col_followers", "date")
87
 
88
+ # Determine date range for filtering
89
  current_datetime_obj = datetime.now()
90
+ current_time_normalized = current_datetime_obj.replace(hour=0, minute=0, second=0, microsecond=0)
91
 
92
  end_dt_filter = current_time_normalized
93
  start_dt_filter = None
 
97
  elif date_filter_option == "Last 30 Days":
98
  start_dt_filter = current_time_normalized - timedelta(days=29)
99
  elif date_filter_option == "Custom Range":
 
 
100
  start_dt_filter_temp = pd.to_datetime(custom_start_date, errors='coerce')
 
101
  start_dt_filter = start_dt_filter_temp.replace(hour=0, minute=0, second=0, microsecond=0) if pd.notna(start_dt_filter_temp) else None
102
 
103
  end_dt_filter_temp = pd.to_datetime(custom_end_date, errors='coerce')
 
105
 
106
  logging.info(f"Date range for filtering: Start: {start_dt_filter}, End: {end_dt_filter}")
107
 
108
+ # Merge posts_df and post_stats_df
109
+ merged_posts_df = pd.DataFrame()
110
+ if not posts_df.empty and not post_stats_df.empty:
111
+ # Assuming posts_df has 'id' and post_stats_df has 'post_id' for merging
112
+ if 'id' in posts_df.columns and 'post_id' in post_stats_df.columns:
113
+ merged_posts_df = pd.merge(posts_df, post_stats_df, left_on='id', right_on='post_id', how='left')
114
+ logging.info(f"Merged posts_df ({len(posts_df)} rows) and post_stats_df ({len(post_stats_df)} rows) into merged_posts_df ({len(merged_posts_df)} rows).")
115
+ else:
116
+ logging.warning("Cannot merge posts_df and post_stats_df due to missing 'id' or 'post_id' columns.")
117
+ # Fallback to using posts_df if merge fails but provide an empty df for stats-dependent plots
118
+ merged_posts_df = posts_df # Or handle as an error / empty DF for those plots
119
+ elif not posts_df.empty:
120
+ logging.warning("post_stats_df is empty. Proceeding with posts_df only for plots that don't require stats.")
121
+ merged_posts_df = posts_df # Create necessary columns with NaN if they are expected by plots
122
+ # For columns expected from post_stats_df, add them with NaNs if not present
123
+ expected_stat_cols = ['engagement', 'impressionCount', 'clickCount', 'likeCount', 'commentCount', 'shareCount']
124
+ for col in expected_stat_cols:
125
+ if col not in merged_posts_df.columns:
126
+ merged_posts_df[col] = pd.NA
127
+
128
+
129
+ # Filter DataFrames by date
130
+ filtered_merged_posts_data = pd.DataFrame()
131
+ if not merged_posts_df.empty and date_column_posts in merged_posts_df.columns:
132
+ filtered_merged_posts_data = filter_dataframe_by_date(merged_posts_df, date_column_posts, start_dt_filter, end_dt_filter)
133
+ elif not merged_posts_df.empty:
134
+ logging.warning(f"Date column '{date_column_posts}' not found in merged_posts_df. Returning unfiltered merged posts data.")
135
+ filtered_merged_posts_data = merged_posts_df # Or apply other logic
136
 
137
  filtered_mentions_data = pd.DataFrame()
138
+ if not mentions_df.empty and date_column_mentions in mentions_df.columns:
139
  filtered_mentions_data = filter_dataframe_by_date(mentions_df, date_column_mentions, start_dt_filter, end_dt_filter)
140
+ elif not mentions_df.empty:
141
+ logging.warning(f"Date column '{date_column_mentions}' not found in mentions_df. Returning unfiltered mentions data.")
142
+ filtered_mentions_data = mentions_df
143
+
144
+ date_filtered_follower_stats_df = pd.DataFrame()
145
+ raw_follower_stats_df = follower_stats_df.copy() # For demographic plots, use raw (or latest snapshot logic)
146
+
147
+ if not follower_stats_df.empty and date_column_followers in follower_stats_df.columns:
148
+ date_filtered_follower_stats_df = filter_dataframe_by_date(follower_stats_df, date_column_followers, start_dt_filter, end_dt_filter)
149
+ elif not follower_stats_df.empty:
150
+ logging.warning(f"Date column '{date_column_followers}' not found in follower_stats_df. Time-series follower plots might be empty or use unfiltered data.")
151
+ # Decide if date_filtered_follower_stats_df should be raw_follower_stats_df or empty
152
+ date_filtered_follower_stats_df = follower_stats_df # Or pd.DataFrame() if strict filtering is required
153
 
154
+ logging.info(f"Processed - Filtered Merged Posts: {len(filtered_merged_posts_data)} rows, Filtered Mentions: {len(filtered_mentions_data)} rows, Date-Filtered Follower Stats: {len(date_filtered_follower_stats_df)} rows.")
155
 
156
+ return filtered_merged_posts_data, filtered_mentions_data, date_filtered_follower_stats_df, raw_follower_stats_df, start_dt_filter, end_dt_filter