Spaces:
Running
Running
Update ui/ui_generators.py
Browse files- ui/ui_generators.py +472 -355
ui/ui_generators.py
CHANGED
@@ -21,7 +21,7 @@ from config import (
|
|
21 |
)
|
22 |
|
23 |
# Configure logging for this module if not already configured at app level
|
24 |
-
# logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
|
25 |
|
26 |
# --- Constants for Button Icons/Text ---
|
27 |
# These are also defined/imported in app.py, ensure consistency
|
@@ -41,404 +41,521 @@ def build_home_tab_ui():
|
|
41 |
Graphs, Reports, and OKR Table, allowing app.py to
|
42 |
attach click handlers for tab navigation.
|
43 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
with gr.Column(scale=1, elem_classes="home-page-container"):
|
45 |
-
#
|
46 |
-
gr.
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
<
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
57 |
</div>
|
58 |
""")
|
59 |
|
60 |
-
# Overview section
|
61 |
-
gr.
|
62 |
-
<div
|
63 |
-
<h2
|
64 |
-
<span
|
65 |
</h2>
|
66 |
-
<p
|
67 |
-
Our comprehensive analytics platform helps you understand and optimize your LinkedIn employer brand performance
|
68 |
</p>
|
69 |
-
<div
|
70 |
-
<div
|
71 |
-
<span
|
72 |
-
<span
|
73 |
</div>
|
74 |
-
<div
|
75 |
-
<span
|
76 |
-
<span
|
77 |
</div>
|
78 |
-
<div
|
79 |
-
<span
|
80 |
-
<span
|
81 |
</div>
|
82 |
-
<div
|
83 |
-
<span
|
84 |
-
<span
|
85 |
</div>
|
86 |
</div>
|
87 |
</div>
|
88 |
""")
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
<div
|
95 |
-
<
|
96 |
-
<
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
104 |
</div>
|
105 |
-
<div
|
106 |
-
<
|
107 |
-
✨ Real-time analytics<br/>
|
108 |
-
📊 Multiple chart types<br/>
|
109 |
-
🔍 Advanced filtering
|
110 |
-
</div>
|
111 |
-
<div style="background: rgba(255,255,255,0.2); padding: 8px; border-radius: 8px;">
|
112 |
-
<span style="font-size: 2em;">📊</span>
|
113 |
-
</div>
|
114 |
</div>
|
115 |
</div>
|
116 |
-
|
117 |
-
btn_graphs = gr.Button("🚀 Explore Graphs", variant="primary", size="lg",
|
118 |
-
elem_classes="nav-button", scale=1)
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
132 |
</div>
|
133 |
-
<div
|
134 |
-
<
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
</div>
|
142 |
</div>
|
143 |
</div>
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
btn_reports = gr.Button("📊 View Reports", variant="primary", size="lg",
|
146 |
elem_classes="nav-button", scale=1)
|
147 |
|
148 |
with gr.Row(equal_height=True):
|
149 |
with gr.Column():
|
150 |
-
gr.Markdown("""
|
151 |
-
<div style="background: linear-gradient(135deg, #FF9800, #F57C00); padding: 25px; border-radius: 15px; min-height: 220px; display: flex; flex-direction: column; justify-content: space-between; box-shadow: 0 6px 20px rgba(255, 152, 0, 0.3); transition: transform 0.3s ease;">
|
152 |
-
<div>
|
153 |
-
<h3 style="color: white; margin-bottom: 15px; font-size: 1.4em; display: flex; align-items: center;">
|
154 |
-
<span style="font-size: 1.8em; margin-right: 12px;">🎯</span> OKR Action Plan
|
155 |
-
</h3>
|
156 |
-
<p style="color: rgba(255,255,255,0.95); line-height: 1.6; font-size: 1.05em; margin-bottom: 20px;">
|
157 |
-
Discover AI-generated Objectives and Key Results (OKRs) with concrete action items.
|
158 |
-
Transform data insights into measurable goals and strategic initiatives to enhance
|
159 |
-
your employer brand effectively.
|
160 |
-
</p>
|
161 |
-
</div>
|
162 |
-
<div style="display: flex; justify-content: space-between; align-items: center; margin-top: 15px;">
|
163 |
-
<div style="color: rgba(255,255,255,0.8); font-size: 0.9em;">
|
164 |
-
🎯 Strategic objectives<br/>
|
165 |
-
✅ Actionable tasks<br/>
|
166 |
-
📈 Measurable outcomes
|
167 |
-
</div>
|
168 |
-
<div style="background: rgba(255,255,255,0.2); padding: 8px; border-radius: 8px;">
|
169 |
-
<span style="font-size: 2em;">🎯</span>
|
170 |
-
</div>
|
171 |
-
</div>
|
172 |
-
</div>
|
173 |
-
""")
|
174 |
btn_okr = gr.Button("🎯 Access OKRs", variant="primary", size="lg",
|
175 |
elem_classes="nav-button", scale=1)
|
176 |
|
177 |
-
# Quick stats or tips column
|
178 |
with gr.Column():
|
179 |
-
gr.Markdown("""
|
180 |
-
<div style="background: linear-gradient(135deg, #9C27B0, #7B1FA2); padding: 25px; border-radius: 15px; min-height: 220px; display: flex; flex-direction: column; justify-content: space-between; box-shadow: 0 6px 20px rgba(156, 39, 176, 0.3);">
|
181 |
-
<div>
|
182 |
-
<h3 style="color: white; margin-bottom: 15px; font-size: 1.4em; display: flex; align-items: center;">
|
183 |
-
<span style="font-size: 1.8em; margin-right: 12px;">💡</span> Getting Started
|
184 |
-
</h3>
|
185 |
-
<p style="color: rgba(255,255,255,0.95); line-height: 1.6; font-size: 1.05em;">
|
186 |
-
New to employer brand analytics? Start with the <strong>Graphs</strong> section to
|
187 |
-
understand your current performance, then check <strong>Reports</strong> for detailed
|
188 |
-
analysis, and finally explore <strong>OKRs</strong> for actionable next steps.
|
189 |
-
</p>
|
190 |
-
</div>
|
191 |
-
<div style="margin-top: 20px; padding: 15px; background: rgba(255,255,255,0.1); border-radius: 8px;">
|
192 |
-
<div style="color: rgba(255,255,255,0.9); font-size: 0.95em; text-align: center;">
|
193 |
-
<strong>💪 Pro Tip:</strong><br/>
|
194 |
-
<span style="font-size: 0.9em;">Regular monitoring leads to 40% better employer brand performance</span>
|
195 |
-
</div>
|
196 |
-
</div>
|
197 |
-
</div>
|
198 |
-
""")
|
199 |
-
# Optional: Add a help or documentation button
|
200 |
btn_help = gr.Button("📚 Documentation", variant="secondary", size="lg",
|
201 |
elem_classes="nav-button", scale=1)
|
202 |
|
203 |
-
#
|
204 |
-
gr.
|
205 |
-
<div
|
206 |
-
<h3
|
207 |
-
<span
|
208 |
</h3>
|
209 |
-
<div
|
210 |
-
<div
|
211 |
-
<div
|
212 |
-
<div>
|
213 |
-
<
|
214 |
-
<
|
215 |
</div>
|
216 |
</div>
|
217 |
-
<div
|
218 |
-
<div
|
219 |
-
<div>
|
220 |
-
<
|
221 |
-
<
|
222 |
</div>
|
223 |
</div>
|
224 |
-
<div
|
225 |
-
<div
|
226 |
-
<div>
|
227 |
-
<
|
228 |
-
<
|
229 |
</div>
|
230 |
</div>
|
231 |
</div>
|
232 |
</div>
|
233 |
""")
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
def run_mentions_tab_display(token_state):
|
238 |
-
"""Generates HTML and a plot for the Mentions tab."""
|
239 |
-
logging.info("Updating Mentions Tab display.")
|
240 |
-
if not token_state or not token_state.get("token"):
|
241 |
-
logging.warning("Mentions tab: Access denied. No token.")
|
242 |
-
return "❌ Access denied. No token available for mentions.", None
|
243 |
-
|
244 |
-
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
|
245 |
-
if mentions_df.empty:
|
246 |
-
logging.info("Mentions tab: No mentions data in Bubble.")
|
247 |
-
return "<p style='text-align:center;'>No mentions data in Bubble. Try syncing.</p>", None
|
248 |
-
|
249 |
-
html_parts = ["<h3 style='text-align:center;'>Recent Mentions</h3>"]
|
250 |
-
display_columns = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label", BUBBLE_MENTIONS_ID_COLUMN_NAME] if col in mentions_df.columns]
|
251 |
-
|
252 |
-
mentions_df_display = mentions_df.copy()
|
253 |
-
if BUBBLE_MENTIONS_DATE_COLUMN_NAME in mentions_df_display.columns:
|
254 |
-
try:
|
255 |
-
mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce')
|
256 |
-
mentions_df_display = mentions_df_display.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
|
257 |
-
mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
|
258 |
-
except Exception as e:
|
259 |
-
logging.error(f"Error formatting mention dates for tab display: {e}")
|
260 |
-
html_parts.append("<p>Error formatting mention dates.</p>")
|
261 |
-
|
262 |
-
if not display_columns or mentions_df_display[display_columns].empty:
|
263 |
-
html_parts.append("<p>Required columns for mentions display are missing or no data after processing.</p>")
|
264 |
-
else:
|
265 |
-
html_parts.append(mentions_df_display[display_columns].head(20).to_html(escape=False, index=False, classes="table table-sm"))
|
266 |
-
|
267 |
-
mentions_html_output = "\n".join(html_parts)
|
268 |
-
fig = None
|
269 |
-
fig_plot_local = None
|
270 |
-
if not mentions_df.empty and "sentiment_label" in mentions_df.columns:
|
271 |
-
try:
|
272 |
-
fig_plot_local, ax = plt.subplots(figsize=(6,4)) # Keep figsize for aspect ratio
|
273 |
-
sentiment_counts = mentions_df["sentiment_label"].value_counts()
|
274 |
-
sentiment_counts.plot(kind='bar', ax=ax, color=['#4CAF50', '#FFC107', '#F44336', '#9E9E9E', '#2196F3'])
|
275 |
-
ax.set_title("Mention Sentiment Distribution", y=1.03)
|
276 |
-
ax.set_ylabel("Count")
|
277 |
-
plt.xticks(rotation=45, ha='right')
|
278 |
-
|
279 |
-
plt.tight_layout()
|
280 |
-
fig_plot_local.subplots_adjust(top=0.90)
|
281 |
-
fig = fig_plot_local
|
282 |
-
logging.info("Mentions tab: Sentiment distribution plot generated.")
|
283 |
-
except Exception as e:
|
284 |
-
logging.error(f"Error generating mentions plot: {e}", exc_info=True)
|
285 |
-
fig = None
|
286 |
-
finally:
|
287 |
-
# Ensure plt.close is called on the figure object, not plt itself if it's not the same
|
288 |
-
if fig_plot_local and fig_plot_local is not plt: # Check if fig_plot_local is a Figure object
|
289 |
-
plt.close(fig_plot_local)
|
290 |
-
return mentions_html_output, fig
|
291 |
-
|
292 |
-
|
293 |
-
def run_follower_stats_tab_display(token_state):
|
294 |
-
"""Generates HTML and plots for the Follower Stats tab."""
|
295 |
-
logging.info("Updating Follower Stats Tab display.")
|
296 |
-
if not token_state or not token_state.get("token"):
|
297 |
-
logging.warning("Follower stats tab: Access denied. No token.")
|
298 |
-
return "❌ Access denied. No token available for follower stats.", None, None, None
|
299 |
-
|
300 |
-
follower_stats_df_orig = token_state.get("bubble_follower_stats_df", pd.DataFrame())
|
301 |
-
if follower_stats_df_orig.empty:
|
302 |
-
logging.info("Follower stats tab: No follower stats data in Bubble.")
|
303 |
-
return "<p style='text-align:center;'>No follower stats data in Bubble. Try syncing.</p>", None, None, None
|
304 |
-
|
305 |
-
follower_stats_df = follower_stats_df_orig.copy()
|
306 |
-
html_parts = ["<div style='padding:10px;'><h3 style='text-align:center;'>Follower Statistics Overview</h3>"]
|
307 |
-
|
308 |
-
plot_monthly_gains = None
|
309 |
-
plot_seniority_dist = None
|
310 |
-
plot_industry_dist = None
|
311 |
-
|
312 |
-
# Monthly Gains Plot
|
313 |
-
fig_gains_local = None
|
314 |
-
try:
|
315 |
-
monthly_gains_df = follower_stats_df[
|
316 |
-
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly') &
|
317 |
-
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
|
318 |
-
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna()) &
|
319 |
-
(follower_stats_df[FOLLOWER_STATS_PAID_COLUMN].notna())
|
320 |
-
].copy()
|
321 |
-
|
322 |
-
if not monthly_gains_df.empty:
|
323 |
-
monthly_gains_df.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN_DT] = pd.to_datetime(monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce')
|
324 |
-
monthly_gains_df_sorted_table = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=False)
|
325 |
-
|
326 |
-
html_parts.append("<h4>Monthly Follower Gains (Last 13 Months):</h4>")
|
327 |
-
table_display_df = monthly_gains_df_sorted_table.copy()
|
328 |
-
table_display_df.loc[:,FOLLOWER_STATS_CATEGORY_COLUMN] = table_display_df[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_MONTH_FORMAT)
|
329 |
-
html_parts.append(table_display_df[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(13).to_html(escape=True, index=False, classes="table table-sm"))
|
330 |
-
|
331 |
-
monthly_gains_df_sorted_plot = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=True).copy()
|
332 |
-
monthly_gains_df_sorted_plot.loc[:, '_plot_month'] = monthly_gains_df_sorted_plot[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_MONTH_FORMAT)
|
333 |
-
plot_data = monthly_gains_df_sorted_plot.groupby('_plot_month').agg(
|
334 |
-
organic=(FOLLOWER_STATS_ORGANIC_COLUMN, 'sum'),
|
335 |
-
paid=(FOLLOWER_STATS_PAID_COLUMN, 'sum')
|
336 |
-
).reset_index()
|
337 |
-
plot_data['_plot_month_dt'] = pd.to_datetime(plot_data['_plot_month'], format=UI_MONTH_FORMAT) # Ensure correct month format
|
338 |
-
plot_data = plot_data.sort_values(by='_plot_month_dt')
|
339 |
-
|
340 |
-
|
341 |
-
fig_gains_local, ax_gains = plt.subplots(figsize=(10,5)) # Keep figsize for aspect ratio
|
342 |
-
ax_gains.plot(plot_data['_plot_month'], plot_data['organic'], marker='o', linestyle='-', label='Organic Gain')
|
343 |
-
ax_gains.plot(plot_data['_plot_month'], plot_data['paid'], marker='x', linestyle='--', label='Paid Gain')
|
344 |
-
ax_gains.set_title("Monthly Follower Gains Over Time", y=1.03)
|
345 |
-
ax_gains.set_ylabel("Follower Count")
|
346 |
-
ax_gains.set_xlabel("Month (YYYY-MM)")
|
347 |
-
plt.xticks(rotation=45, ha='right')
|
348 |
-
ax_gains.legend()
|
349 |
-
plt.grid(True, linestyle='--', alpha=0.7)
|
350 |
-
|
351 |
-
plt.tight_layout()
|
352 |
-
fig_gains_local.subplots_adjust(top=0.90)
|
353 |
-
plot_monthly_gains = fig_gains_local
|
354 |
-
logging.info("Follower stats tab: Monthly gains plot generated.")
|
355 |
-
else:
|
356 |
-
html_parts.append("<p>No monthly follower gain data available or required columns missing.</p>")
|
357 |
-
except Exception as e:
|
358 |
-
logging.error(f"Error processing or plotting monthly gains: {e}", exc_info=True)
|
359 |
-
html_parts.append("<p>Error displaying monthly follower gain data.</p>")
|
360 |
-
plot_monthly_gains = None
|
361 |
-
finally:
|
362 |
-
if fig_gains_local and fig_gains_local is not plt:
|
363 |
-
plt.close(fig_gains_local)
|
364 |
-
html_parts.append("<hr/>")
|
365 |
-
|
366 |
-
|
367 |
-
# Seniority Plot
|
368 |
-
fig_seniority_local = None
|
369 |
-
try:
|
370 |
-
seniority_df = follower_stats_df[
|
371 |
-
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_seniority') &
|
372 |
-
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
|
373 |
-
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
|
374 |
-
].copy()
|
375 |
-
if not seniority_df.empty:
|
376 |
-
seniority_df_sorted = seniority_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
|
377 |
-
html_parts.append("<h4>Followers by Seniority (Top 10 Organic):</h4>")
|
378 |
-
html_parts.append(seniority_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))
|
379 |
-
|
380 |
-
fig_seniority_local, ax_seniority = plt.subplots(figsize=(8,5)) # Keep figsize for aspect ratio
|
381 |
-
top_n_seniority = seniority_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
|
382 |
-
ax_seniority.bar(top_n_seniority[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_seniority[FOLLOWER_STATS_ORGANIC_COLUMN], color='skyblue')
|
383 |
-
ax_seniority.set_title("Follower Distribution by Seniority (Top 10 Organic)", y=1.03)
|
384 |
-
ax_seniority.set_ylabel("Organic Follower Count")
|
385 |
-
plt.xticks(rotation=45, ha='right')
|
386 |
-
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
387 |
-
|
388 |
-
plt.tight_layout()
|
389 |
-
fig_seniority_local.subplots_adjust(top=0.88)
|
390 |
-
plot_seniority_dist = fig_seniority_local
|
391 |
-
logging.info("Follower stats tab: Seniority distribution plot generated.")
|
392 |
-
else:
|
393 |
-
html_parts.append("<p>No follower seniority data available or required columns missing.</p>")
|
394 |
-
except Exception as e:
|
395 |
-
logging.error(f"Error processing or plotting seniority data: {e}", exc_info=True)
|
396 |
-
html_parts.append("<p>Error displaying follower seniority data.</p>")
|
397 |
-
plot_seniority_dist = None
|
398 |
-
finally:
|
399 |
-
if fig_seniority_local and fig_seniority_local is not plt:
|
400 |
-
plt.close(fig_seniority_local)
|
401 |
-
html_parts.append("<hr/>")
|
402 |
-
|
403 |
-
# Industry Plot
|
404 |
-
fig_industry_local = None
|
405 |
-
try:
|
406 |
-
industry_df = follower_stats_df[
|
407 |
-
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_industry') &
|
408 |
-
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
|
409 |
-
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
|
410 |
-
].copy()
|
411 |
-
if not industry_df.empty:
|
412 |
-
industry_df_sorted = industry_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
|
413 |
-
html_parts.append("<h4>Followers by Industry (Top 10 Organic):</h4>")
|
414 |
-
html_parts.append(industry_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))
|
415 |
-
|
416 |
-
fig_industry_local, ax_industry = plt.subplots(figsize=(8,5)) # Keep figsize for aspect ratio
|
417 |
-
top_n_industry = industry_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
|
418 |
-
ax_industry.bar(top_n_industry[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_industry[FOLLOWER_STATS_ORGANIC_COLUMN], color='lightcoral')
|
419 |
-
ax_industry.set_title("Follower Distribution by Industry (Top 10 Organic)", y=1.03)
|
420 |
-
ax_industry.set_ylabel("Organic Follower Count")
|
421 |
-
plt.xticks(rotation=45, ha='right')
|
422 |
-
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
423 |
-
|
424 |
-
plt.tight_layout()
|
425 |
-
fig_industry_local.subplots_adjust(top=0.88)
|
426 |
-
plot_industry_dist = fig_industry_local
|
427 |
-
logging.info("Follower stats tab: Industry distribution plot generated.")
|
428 |
-
else:
|
429 |
-
html_parts.append("<p>No follower industry data available or required columns missing.</p>")
|
430 |
-
except Exception as e:
|
431 |
-
logging.error(f"Error processing or plotting industry data: {e}", exc_info=True)
|
432 |
-
html_parts.append("<p>Error displaying follower industry data.</p>")
|
433 |
-
plot_industry_dist = None
|
434 |
-
finally:
|
435 |
-
if fig_industry_local and fig_industry_local is not plt:
|
436 |
-
plt.close(fig_industry_local)
|
437 |
-
|
438 |
-
|
439 |
-
html_parts.append("</div>")
|
440 |
-
follower_html_output = "\n".join(html_parts)
|
441 |
-
return follower_html_output, plot_monthly_gains, plot_seniority_dist, plot_industry_dist
|
442 |
|
443 |
|
444 |
def create_analytics_plot_panel(plot_label_str, plot_id_str):
|
|
|
21 |
)
|
22 |
|
23 |
# Configure logging for this module if not already configured at app level
|
24 |
+
# logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(module)s - %(message)s')
|
25 |
|
26 |
# --- Constants for Button Icons/Text ---
|
27 |
# These are also defined/imported in app.py, ensure consistency
|
|
|
41 |
Graphs, Reports, and OKR Table, allowing app.py to
|
42 |
attach click handlers for tab navigation.
|
43 |
"""
|
44 |
+
# Custom CSS for enhanced styling
|
45 |
+
css_styles = """
|
46 |
+
<style>
|
47 |
+
.hero-section {
|
48 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
49 |
+
padding: 60px 40px;
|
50 |
+
border-radius: 24px;
|
51 |
+
margin-bottom: 40px;
|
52 |
+
box-shadow: 0 20px 60px rgba(102, 126, 234, 0.25);
|
53 |
+
color: white;
|
54 |
+
text-align: center;
|
55 |
+
position: relative;
|
56 |
+
overflow: hidden;
|
57 |
+
}
|
58 |
+
|
59 |
+
.hero-section::before {
|
60 |
+
content: '';
|
61 |
+
position: absolute;
|
62 |
+
top: 0;
|
63 |
+
left: 0;
|
64 |
+
right: 0;
|
65 |
+
bottom: 0;
|
66 |
+
background: url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100"><defs><pattern id="grain" width="100" height="100" patternUnits="userSpaceOnUse"><circle cx="25" cy="25" r="1" fill="rgba(255,255,255,0.05)"/><circle cx="75" cy="75" r="1" fill="rgba(255,255,255,0.05)"/><circle cx="50" cy="10" r="0.5" fill="rgba(255,255,255,0.03)"/></pattern></defs><rect width="100" height="100" fill="url(%23grain)"/></svg>');
|
67 |
+
opacity: 0.1;
|
68 |
+
}
|
69 |
+
|
70 |
+
.hero-content {
|
71 |
+
position: relative;
|
72 |
+
z-index: 1;
|
73 |
+
}
|
74 |
+
|
75 |
+
.hero-title {
|
76 |
+
font-size: 3.2em;
|
77 |
+
font-weight: 800;
|
78 |
+
margin-bottom: 24px;
|
79 |
+
background: linear-gradient(45deg, #ffffff, #e0e7ff);
|
80 |
+
-webkit-background-clip: text;
|
81 |
+
-webkit-text-fill-color: transparent;
|
82 |
+
background-clip: text;
|
83 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
|
84 |
+
line-height: 1.2;
|
85 |
+
}
|
86 |
+
|
87 |
+
.hero-subtitle {
|
88 |
+
font-size: 1.4em;
|
89 |
+
line-height: 1.6;
|
90 |
+
margin-bottom: 16px;
|
91 |
+
opacity: 0.95;
|
92 |
+
font-weight: 300;
|
93 |
+
}
|
94 |
+
|
95 |
+
.hero-description {
|
96 |
+
font-size: 1.1em;
|
97 |
+
opacity: 0.85;
|
98 |
+
font-weight: 300;
|
99 |
+
max-width: 600px;
|
100 |
+
margin: 0 auto;
|
101 |
+
}
|
102 |
+
|
103 |
+
.overview-section {
|
104 |
+
background: #ffffff;
|
105 |
+
padding: 40px;
|
106 |
+
border-radius: 20px;
|
107 |
+
margin-bottom: 40px;
|
108 |
+
box-shadow: 0 10px 40px rgba(0,0,0,0.08);
|
109 |
+
border: 1px solid rgba(0,0,0,0.05);
|
110 |
+
}
|
111 |
+
|
112 |
+
.overview-header {
|
113 |
+
color: #1a202c;
|
114 |
+
margin-bottom: 24px;
|
115 |
+
font-size: 2.2em;
|
116 |
+
font-weight: 700;
|
117 |
+
display: flex;
|
118 |
+
align-items: center;
|
119 |
+
gap: 16px;
|
120 |
+
}
|
121 |
+
|
122 |
+
.overview-text {
|
123 |
+
font-size: 1.15em;
|
124 |
+
color: #4a5568;
|
125 |
+
line-height: 1.7;
|
126 |
+
margin-bottom: 32px;
|
127 |
+
font-weight: 400;
|
128 |
+
}
|
129 |
+
|
130 |
+
.features-grid {
|
131 |
+
display: grid;
|
132 |
+
grid-template-columns: repeat(auto-fit, minmax(280px, 1fr));
|
133 |
+
gap: 24px;
|
134 |
+
margin-top: 32px;
|
135 |
+
}
|
136 |
+
|
137 |
+
.feature-item {
|
138 |
+
display: flex;
|
139 |
+
align-items: center;
|
140 |
+
padding: 20px;
|
141 |
+
background: linear-gradient(135deg, #f8fafc, #f1f5f9);
|
142 |
+
border-radius: 16px;
|
143 |
+
border: 1px solid rgba(0,0,0,0.06);
|
144 |
+
transition: all 0.3s ease;
|
145 |
+
}
|
146 |
+
|
147 |
+
.feature-item:hover {
|
148 |
+
transform: translateY(-2px);
|
149 |
+
box-shadow: 0 8px 25px rgba(0,0,0,0.1);
|
150 |
+
}
|
151 |
+
|
152 |
+
.feature-icon {
|
153 |
+
font-size: 2em;
|
154 |
+
margin-right: 16px;
|
155 |
+
filter: drop-shadow(0 2px 4px rgba(0,0,0,0.1));
|
156 |
+
}
|
157 |
+
|
158 |
+
.feature-text {
|
159 |
+
color: #2d3748;
|
160 |
+
font-weight: 500;
|
161 |
+
font-size: 1.05em;
|
162 |
+
}
|
163 |
+
|
164 |
+
.nav-cards-container {
|
165 |
+
display: grid;
|
166 |
+
grid-template-columns: repeat(auto-fit, minmax(350px, 1fr));
|
167 |
+
gap: 30px;
|
168 |
+
margin-bottom: 40px;
|
169 |
+
}
|
170 |
+
|
171 |
+
.nav-card {
|
172 |
+
padding: 36px;
|
173 |
+
border-radius: 20px;
|
174 |
+
min-height: 280px;
|
175 |
+
display: flex;
|
176 |
+
flex-direction: column;
|
177 |
+
justify-content: space-between;
|
178 |
+
box-shadow: 0 15px 45px rgba(0,0,0,0.12);
|
179 |
+
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
|
180 |
+
position: relative;
|
181 |
+
overflow: hidden;
|
182 |
+
}
|
183 |
+
|
184 |
+
.nav-card::before {
|
185 |
+
content: '';
|
186 |
+
position: absolute;
|
187 |
+
top: 0;
|
188 |
+
left: 0;
|
189 |
+
right: 0;
|
190 |
+
bottom: 0;
|
191 |
+
background: linear-gradient(135deg, rgba(255,255,255,0.1) 0%, rgba(255,255,255,0.05) 100%);
|
192 |
+
opacity: 0;
|
193 |
+
transition: opacity 0.3s ease;
|
194 |
+
}
|
195 |
+
|
196 |
+
.nav-card:hover::before {
|
197 |
+
opacity: 1;
|
198 |
+
}
|
199 |
+
|
200 |
+
.nav-card:hover {
|
201 |
+
transform: translateY(-8px) scale(1.02);
|
202 |
+
box-shadow: 0 25px 60px rgba(0,0,0,0.15);
|
203 |
+
}
|
204 |
+
|
205 |
+
.nav-card-graphs {
|
206 |
+
background: linear-gradient(135deg, #4CAF50, #2E7D32);
|
207 |
+
}
|
208 |
+
|
209 |
+
.nav-card-reports {
|
210 |
+
background: linear-gradient(135deg, #2196F3, #1565C0);
|
211 |
+
}
|
212 |
+
|
213 |
+
.nav-card-okr {
|
214 |
+
background: linear-gradient(135deg, #FF9800, #E65100);
|
215 |
+
}
|
216 |
+
|
217 |
+
.nav-card-help {
|
218 |
+
background: linear-gradient(135deg, #9C27B0, #4A148C);
|
219 |
+
}
|
220 |
+
|
221 |
+
.nav-card-header {
|
222 |
+
color: white;
|
223 |
+
margin-bottom: 20px;
|
224 |
+
font-size: 1.5em;
|
225 |
+
font-weight: 700;
|
226 |
+
display: flex;
|
227 |
+
align-items: center;
|
228 |
+
gap: 16px;
|
229 |
+
}
|
230 |
+
|
231 |
+
.nav-card-icon {
|
232 |
+
font-size: 2.2em;
|
233 |
+
filter: drop-shadow(0 2px 4px rgba(0,0,0,0.2));
|
234 |
+
}
|
235 |
+
|
236 |
+
.nav-card-description {
|
237 |
+
color: rgba(255,255,255,0.95);
|
238 |
+
line-height: 1.7;
|
239 |
+
font-size: 1.08em;
|
240 |
+
margin-bottom: 24px;
|
241 |
+
font-weight: 300;
|
242 |
+
}
|
243 |
+
|
244 |
+
.nav-card-footer {
|
245 |
+
display: flex;
|
246 |
+
justify-content: space-between;
|
247 |
+
align-items: center;
|
248 |
+
margin-top: 20px;
|
249 |
+
position: relative;
|
250 |
+
z-index: 1;
|
251 |
+
}
|
252 |
+
|
253 |
+
.nav-card-features {
|
254 |
+
color: rgba(255,255,255,0.85);
|
255 |
+
font-size: 0.95em;
|
256 |
+
line-height: 1.6;
|
257 |
+
}
|
258 |
+
|
259 |
+
.nav-card-badge {
|
260 |
+
background: rgba(255,255,255,0.2);
|
261 |
+
padding: 12px;
|
262 |
+
border-radius: 12px;
|
263 |
+
backdrop-filter: blur(10px);
|
264 |
+
}
|
265 |
+
|
266 |
+
.nav-card-badge-icon {
|
267 |
+
font-size: 2.2em;
|
268 |
+
}
|
269 |
+
|
270 |
+
.how-it-works-section {
|
271 |
+
background: linear-gradient(135deg, #f8fafc, #e2e8f0);
|
272 |
+
padding: 40px;
|
273 |
+
border-radius: 20px;
|
274 |
+
margin-top: 40px;
|
275 |
+
border: 1px solid rgba(0,0,0,0.06);
|
276 |
+
}
|
277 |
+
|
278 |
+
.how-it-works-header {
|
279 |
+
color: #1a202c;
|
280 |
+
margin-bottom: 32px;
|
281 |
+
font-size: 2em;
|
282 |
+
font-weight: 700;
|
283 |
+
display: flex;
|
284 |
+
align-items: center;
|
285 |
+
gap: 16px;
|
286 |
+
}
|
287 |
+
|
288 |
+
.steps-grid {
|
289 |
+
display: grid;
|
290 |
+
grid-template-columns: repeat(auto-fit, minmax(320px, 1fr));
|
291 |
+
gap: 32px;
|
292 |
+
}
|
293 |
+
|
294 |
+
.step-item {
|
295 |
+
display: flex;
|
296 |
+
align-items: flex-start;
|
297 |
+
gap: 20px;
|
298 |
+
}
|
299 |
+
|
300 |
+
.step-number {
|
301 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
302 |
+
color: white;
|
303 |
+
border-radius: 50%;
|
304 |
+
width: 48px;
|
305 |
+
height: 48px;
|
306 |
+
display: flex;
|
307 |
+
align-items: center;
|
308 |
+
justify-content: center;
|
309 |
+
flex-shrink: 0;
|
310 |
+
font-weight: 700;
|
311 |
+
font-size: 1.2em;
|
312 |
+
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.3);
|
313 |
+
}
|
314 |
+
|
315 |
+
.step-content {
|
316 |
+
flex: 1;
|
317 |
+
}
|
318 |
+
|
319 |
+
.step-title {
|
320 |
+
color: #1a202c;
|
321 |
+
font-weight: 700;
|
322 |
+
font-size: 1.2em;
|
323 |
+
margin-bottom: 8px;
|
324 |
+
}
|
325 |
+
|
326 |
+
.step-description {
|
327 |
+
color: #4a5568;
|
328 |
+
font-size: 1em;
|
329 |
+
line-height: 1.6;
|
330 |
+
}
|
331 |
+
|
332 |
+
.button-container {
|
333 |
+
margin-top: 24px;
|
334 |
+
}
|
335 |
+
|
336 |
+
@media (max-width: 768px) {
|
337 |
+
.hero-title {
|
338 |
+
font-size: 2.4em;
|
339 |
+
}
|
340 |
+
|
341 |
+
.nav-cards-container {
|
342 |
+
grid-template-columns: 1fr;
|
343 |
+
}
|
344 |
+
|
345 |
+
.nav-card {
|
346 |
+
min-height: 240px;
|
347 |
+
padding: 28px;
|
348 |
+
}
|
349 |
+
|
350 |
+
.hero-section {
|
351 |
+
padding: 40px 24px;
|
352 |
+
}
|
353 |
+
|
354 |
+
.overview-section, .how-it-works-section {
|
355 |
+
padding: 28px;
|
356 |
+
}
|
357 |
+
}
|
358 |
+
</style>
|
359 |
+
"""
|
360 |
+
|
361 |
with gr.Column(scale=1, elem_classes="home-page-container"):
|
362 |
+
# Inject custom CSS
|
363 |
+
gr.HTML(css_styles)
|
364 |
+
|
365 |
+
# Main hero section
|
366 |
+
gr.HTML("""
|
367 |
+
<div class="hero-section">
|
368 |
+
<div class="hero-content">
|
369 |
+
<h1 class="hero-title">
|
370 |
+
🚀 LinkedIn Employer Brand Analytics
|
371 |
+
</h1>
|
372 |
+
<p class="hero-subtitle">
|
373 |
+
Transform your LinkedIn presence with data-driven insights and actionable strategies
|
374 |
+
</p>
|
375 |
+
<p class="hero-description">
|
376 |
+
Measure, analyze, and enhance your employer brand to attract top talent and build a stronger digital presence
|
377 |
+
</p>
|
378 |
+
</div>
|
379 |
</div>
|
380 |
""")
|
381 |
|
382 |
+
# Overview section with improved spacing
|
383 |
+
gr.HTML("""
|
384 |
+
<div class="overview-section">
|
385 |
+
<h2 class="overview-header">
|
386 |
+
<span>📊</span> What This Dashboard Offers
|
387 |
</h2>
|
388 |
+
<p class="overview-text">
|
389 |
+
Our comprehensive analytics platform helps you understand and optimize your LinkedIn employer brand performance with real-time insights, automated reporting, and AI-powered recommendations.
|
390 |
</p>
|
391 |
+
<div class="features-grid">
|
392 |
+
<div class="feature-item">
|
393 |
+
<span class="feature-icon">📈</span>
|
394 |
+
<span class="feature-text">Real-time data visualization and trend analysis</span>
|
395 |
</div>
|
396 |
+
<div class="feature-item">
|
397 |
+
<span class="feature-icon">📋</span>
|
398 |
+
<span class="feature-text">Automated quarterly and weekly performance reports</span>
|
399 |
</div>
|
400 |
+
<div class="feature-item">
|
401 |
+
<span class="feature-icon">🎯</span>
|
402 |
+
<span class="feature-text">AI-powered OKRs and actionable recommendations</span>
|
403 |
</div>
|
404 |
+
<div class="feature-item">
|
405 |
+
<span class="feature-icon">🚀</span>
|
406 |
+
<span class="feature-text">Strategic insights to improve employer branding</span>
|
407 |
</div>
|
408 |
</div>
|
409 |
</div>
|
410 |
""")
|
411 |
|
412 |
+
# Navigation cards with improved layout
|
413 |
+
gr.HTML("""
|
414 |
+
<div class="nav-cards-container">
|
415 |
+
<div class="nav-card nav-card-graphs">
|
416 |
+
<div>
|
417 |
+
<h3 class="nav-card-header">
|
418 |
+
<span class="nav-card-icon">📈</span> Interactive Graphs
|
419 |
+
</h3>
|
420 |
+
<p class="nav-card-description">
|
421 |
+
Explore dynamic visualizations of your LinkedIn performance metrics. Track post engagement,
|
422 |
+
follower growth, mentions sentiment, and identify trends over time with interactive charts
|
423 |
+
and advanced filtering options.
|
424 |
+
</p>
|
425 |
+
</div>
|
426 |
+
<div class="nav-card-footer">
|
427 |
+
<div class="nav-card-features">
|
428 |
+
✨ Real-time analytics<br/>
|
429 |
+
📊 Multiple chart types<br/>
|
430 |
+
🔍 Advanced filtering
|
431 |
</div>
|
432 |
+
<div class="nav-card-badge">
|
433 |
+
<span class="nav-card-badge-icon">📊</span>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
</div>
|
435 |
</div>
|
436 |
+
</div>
|
|
|
|
|
437 |
|
438 |
+
<div class="nav-card nav-card-reports">
|
439 |
+
<div>
|
440 |
+
<h3 class="nav-card-header">
|
441 |
+
<span class="nav-card-icon">📊</span> Analysis Reports
|
442 |
+
</h3>
|
443 |
+
<p class="nav-card-description">
|
444 |
+
Access comprehensive quarterly and weekly reports powered by AI analysis. Get detailed
|
445 |
+
insights into your employer brand performance, competitor analysis, and market positioning
|
446 |
+
with automated report generation.
|
447 |
+
</p>
|
448 |
+
</div>
|
449 |
+
<div class="nav-card-footer">
|
450 |
+
<div class="nav-card-features">
|
451 |
+
📋 Automated reports<br/>
|
452 |
+
🤖 AI-powered insights<br/>
|
453 |
+
📅 Weekly & quarterly
|
454 |
</div>
|
455 |
+
<div class="nav-card-badge">
|
456 |
+
<span class="nav-card-badge-icon">📄</span>
|
457 |
+
</div>
|
458 |
+
</div>
|
459 |
+
</div>
|
460 |
+
|
461 |
+
<div class="nav-card nav-card-okr">
|
462 |
+
<div>
|
463 |
+
<h3 class="nav-card-header">
|
464 |
+
<span class="nav-card-icon">🎯</span> OKR Action Plan
|
465 |
+
</h3>
|
466 |
+
<p class="nav-card-description">
|
467 |
+
Discover AI-generated Objectives and Key Results (OKRs) with concrete action items.
|
468 |
+
Transform data insights into measurable goals and strategic initiatives to enhance
|
469 |
+
your employer brand effectively.
|
470 |
+
</p>
|
471 |
+
</div>
|
472 |
+
<div class="nav-card-footer">
|
473 |
+
<div class="nav-card-features">
|
474 |
+
🎯 Strategic objectives<br/>
|
475 |
+
✅ Actionable tasks<br/>
|
476 |
+
📈 Measurable outcomes
|
477 |
+
</div>
|
478 |
+
<div class="nav-card-badge">
|
479 |
+
<span class="nav-card-badge-icon">🎯</span>
|
480 |
+
</div>
|
481 |
+
</div>
|
482 |
+
</div>
|
483 |
+
|
484 |
+
<div class="nav-card nav-card-help">
|
485 |
+
<div>
|
486 |
+
<h3 class="nav-card-header">
|
487 |
+
<span class="nav-card-icon">💡</span> Getting Started
|
488 |
+
</h3>
|
489 |
+
<p class="nav-card-description">
|
490 |
+
New to employer brand analytics? Start with the Graphs section to
|
491 |
+
understand your current performance, then check Reports for detailed
|
492 |
+
analysis, and finally explore OKRs for actionable next steps.
|
493 |
+
</p>
|
494 |
+
</div>
|
495 |
+
<div class="nav-card-footer">
|
496 |
+
<div style="background: rgba(255,255,255,0.15); padding: 16px; border-radius: 12px; width: 100%; text-align: center;">
|
497 |
+
<div style="color: rgba(255,255,255,0.95); font-size: 1em;">
|
498 |
+
<strong>💪 Pro Tip:</strong><br/>
|
499 |
+
<span style="font-size: 0.9em;">Regular monitoring leads to 40% better employer brand performance</span>
|
500 |
</div>
|
501 |
</div>
|
502 |
</div>
|
503 |
+
</div>
|
504 |
+
</div>
|
505 |
+
""")
|
506 |
+
|
507 |
+
# Create buttons with better spacing
|
508 |
+
with gr.Row(equal_height=True):
|
509 |
+
with gr.Column():
|
510 |
+
btn_graphs = gr.Button("🚀 Explore Graphs", variant="primary", size="lg",
|
511 |
+
elem_classes="nav-button", scale=1)
|
512 |
+
|
513 |
+
with gr.Column():
|
514 |
btn_reports = gr.Button("📊 View Reports", variant="primary", size="lg",
|
515 |
elem_classes="nav-button", scale=1)
|
516 |
|
517 |
with gr.Row(equal_height=True):
|
518 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
btn_okr = gr.Button("🎯 Access OKRs", variant="primary", size="lg",
|
520 |
elem_classes="nav-button", scale=1)
|
521 |
|
|
|
522 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
523 |
btn_help = gr.Button("📚 Documentation", variant="secondary", size="lg",
|
524 |
elem_classes="nav-button", scale=1)
|
525 |
|
526 |
+
# How it works section with enhanced styling
|
527 |
+
gr.HTML("""
|
528 |
+
<div class="how-it-works-section">
|
529 |
+
<h3 class="how-it-works-header">
|
530 |
+
<span>ℹ️</span> How It Works
|
531 |
</h3>
|
532 |
+
<div class="steps-grid">
|
533 |
+
<div class="step-item">
|
534 |
+
<div class="step-number">1</div>
|
535 |
+
<div class="step-content">
|
536 |
+
<div class="step-title">Data Collection</div>
|
537 |
+
<div class="step-description">Automatically syncs with your LinkedIn organization data and processes engagement metrics in real-time</div>
|
538 |
</div>
|
539 |
</div>
|
540 |
+
<div class="step-item">
|
541 |
+
<div class="step-number">2</div>
|
542 |
+
<div class="step-content">
|
543 |
+
<div class="step-title">AI Analysis</div>
|
544 |
+
<div class="step-description">Advanced algorithms analyze trends, sentiment, and performance patterns to generate actionable insights</div>
|
545 |
</div>
|
546 |
</div>
|
547 |
+
<div class="step-item">
|
548 |
+
<div class="step-number">3</div>
|
549 |
+
<div class="step-content">
|
550 |
+
<div class="step-title">Actionable Results</div>
|
551 |
+
<div class="step-description">Receive specific recommendations, measurable goals, and strategic action plans to improve your employer brand</div>
|
552 |
</div>
|
553 |
</div>
|
554 |
</div>
|
555 |
</div>
|
556 |
""")
|
557 |
+
|
558 |
+
return btn_graphs, btn_reports, btn_okr, btn_help
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
559 |
|
560 |
|
561 |
def create_analytics_plot_panel(plot_label_str, plot_id_str):
|