GuglielmoTor commited on
Commit
e3cbb18
·
verified ·
1 Parent(s): 791c130

Create analytics_data_processing.py

Browse files
Files changed (1) hide show
  1. analytics_data_processing.py +93 -0
analytics_data_processing.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from datetime import datetime, timedelta
3
+ import logging
4
+
5
+ # Configure logging for this module
6
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
7
+
8
+ def filter_dataframe_by_date(df, date_column, start_date, end_date):
9
+ """Filters a DataFrame by a date column within a given date range."""
10
+ if df is None or df.empty or not date_column:
11
+ logging.warning(f"Filter by date: DataFrame is None, empty, or no date_column provided. DF: {df is not None}, empty: {df.empty if df is not None else 'N/A'}, date_column: {date_column}")
12
+ return pd.DataFrame()
13
+ if date_column not in df.columns:
14
+ logging.warning(f"Filter by date: Date column '{date_column}' not found in DataFrame columns: {df.columns.tolist()}.")
15
+ return pd.DataFrame()
16
+
17
+ df_copy = df.copy() # Work on a copy to avoid SettingWithCopyWarning
18
+ try:
19
+ if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
20
+ df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
21
+ except Exception as e:
22
+ logging.error(f"Error converting date column '{date_column}' to datetime: {e}")
23
+ return pd.DataFrame() # Return empty if conversion fails
24
+
25
+ df_filtered = df_copy.dropna(subset=[date_column])
26
+ if df_filtered.empty:
27
+ logging.info(f"Filter by date: DataFrame became empty after dropping NaNs in date column '{date_column}'.")
28
+ return pd.DataFrame()
29
+
30
+ # Convert start_date and end_date to datetime objects if they are not None
31
+ # Normalize to remove time part for consistent date comparisons if dates are just dates
32
+ start_dt_obj = pd.to_datetime(start_date, errors='coerce').normalize() if start_date else None
33
+ end_dt_obj = pd.to_datetime(end_date, errors='coerce').normalize() if end_date else None
34
+
35
+
36
+ if start_dt_obj and end_dt_obj:
37
+ # Ensure the DataFrame's date column is also normalized if it contains time
38
+ df_filtered[date_column] = df_filtered[date_column].dt.normalize()
39
+ return df_filtered[(df_filtered[date_column] >= start_dt_obj) & (df_filtered[date_column] <= end_dt_obj)]
40
+ elif start_dt_obj:
41
+ df_filtered[date_column] = df_filtered[date_column].dt.normalize()
42
+ return df_filtered[df_filtered[date_column] >= start_dt_obj]
43
+ elif end_dt_obj:
44
+ df_filtered[date_column] = df_filtered[date_column].dt.normalize()
45
+ return df_filtered[df_filtered[date_column] <= end_dt_obj]
46
+ return df_filtered # No date filtering if neither start_date nor end_date is provided
47
+
48
+
49
+ def prepare_filtered_analytics_data(token_state_value, date_filter_option, custom_start_date, custom_end_date):
50
+ """
51
+ Retrieves data from token_state, determines date range, filters posts and mentions.
52
+ Returns filtered_posts_df, filtered_mentions_df, follower_stats_df (unfiltered),
53
+ and the determined start_dt, end_dt for messaging.
54
+ """
55
+ logging.info(f"Preparing filtered analytics data. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
56
+
57
+ posts_df = token_state_value.get("bubble_posts_df", pd.DataFrame())
58
+ mentions_df = token_state_value.get("bubble_mentions_df", pd.DataFrame())
59
+ follower_stats_df = token_state_value.get("bubble_follower_stats_df", pd.DataFrame())
60
+
61
+ date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
62
+ date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
63
+
64
+ # Determine date range for filtering posts and mentions
65
+ # Ensure end_dt is also normalized if it's datetime.now() for consistent comparison with normalized dates
66
+ current_time_normalized = datetime.now().normalize()
67
+ end_dt_filter = current_time_normalized
68
+ start_dt_filter = None
69
+
70
+ if date_filter_option == "Last 7 Days":
71
+ start_dt_filter = current_time_normalized - timedelta(days=6) # Inclusive of start day
72
+ elif date_filter_option == "Last 30 Days":
73
+ start_dt_filter = current_time_normalized - timedelta(days=29) # Inclusive of start day
74
+ elif date_filter_option == "Custom Range":
75
+ start_dt_filter = pd.to_datetime(custom_start_date, errors='coerce').normalize() if custom_start_date else None
76
+ # If custom_end_date is not provided, use current_time_normalized for end_dt_filter
77
+ end_dt_filter = pd.to_datetime(custom_end_date, errors='coerce').normalize() if custom_end_date else current_time_normalized
78
+ # "All Time" means start_dt_filter remains None, end_dt_filter effectively means up to now or unbounded if None
79
+
80
+ logging.info(f"Date range for filtering: Start: {start_dt_filter}, End: {end_dt_filter}")
81
+
82
+ # Filter DataFrames
83
+ filtered_posts_data = pd.DataFrame()
84
+ if not posts_df.empty:
85
+ filtered_posts_data = filter_dataframe_by_date(posts_df, date_column_posts, start_dt_filter, end_dt_filter)
86
+
87
+ filtered_mentions_data = pd.DataFrame()
88
+ if not mentions_df.empty:
89
+ filtered_mentions_data = filter_dataframe_by_date(mentions_df, date_column_mentions, start_dt_filter, end_dt_filter)
90
+
91
+ logging.info(f"Processed - Filtered posts: {len(filtered_posts_data)} rows, Filtered Mentions: {len(filtered_mentions_data)} rows.")
92
+
93
+ return filtered_posts_data, filtered_mentions_data, follower_stats_df, start_dt_filter, end_dt_filter