Spaces:
Running
Running
Create analytics_data_processing.py
Browse files- analytics_data_processing.py +93 -0
analytics_data_processing.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from datetime import datetime, timedelta
|
3 |
+
import logging
|
4 |
+
|
5 |
+
# Configure logging for this module
|
6 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
|
7 |
+
|
8 |
+
def filter_dataframe_by_date(df, date_column, start_date, end_date):
|
9 |
+
"""Filters a DataFrame by a date column within a given date range."""
|
10 |
+
if df is None or df.empty or not date_column:
|
11 |
+
logging.warning(f"Filter by date: DataFrame is None, empty, or no date_column provided. DF: {df is not None}, empty: {df.empty if df is not None else 'N/A'}, date_column: {date_column}")
|
12 |
+
return pd.DataFrame()
|
13 |
+
if date_column not in df.columns:
|
14 |
+
logging.warning(f"Filter by date: Date column '{date_column}' not found in DataFrame columns: {df.columns.tolist()}.")
|
15 |
+
return pd.DataFrame()
|
16 |
+
|
17 |
+
df_copy = df.copy() # Work on a copy to avoid SettingWithCopyWarning
|
18 |
+
try:
|
19 |
+
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
|
20 |
+
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
|
21 |
+
except Exception as e:
|
22 |
+
logging.error(f"Error converting date column '{date_column}' to datetime: {e}")
|
23 |
+
return pd.DataFrame() # Return empty if conversion fails
|
24 |
+
|
25 |
+
df_filtered = df_copy.dropna(subset=[date_column])
|
26 |
+
if df_filtered.empty:
|
27 |
+
logging.info(f"Filter by date: DataFrame became empty after dropping NaNs in date column '{date_column}'.")
|
28 |
+
return pd.DataFrame()
|
29 |
+
|
30 |
+
# Convert start_date and end_date to datetime objects if they are not None
|
31 |
+
# Normalize to remove time part for consistent date comparisons if dates are just dates
|
32 |
+
start_dt_obj = pd.to_datetime(start_date, errors='coerce').normalize() if start_date else None
|
33 |
+
end_dt_obj = pd.to_datetime(end_date, errors='coerce').normalize() if end_date else None
|
34 |
+
|
35 |
+
|
36 |
+
if start_dt_obj and end_dt_obj:
|
37 |
+
# Ensure the DataFrame's date column is also normalized if it contains time
|
38 |
+
df_filtered[date_column] = df_filtered[date_column].dt.normalize()
|
39 |
+
return df_filtered[(df_filtered[date_column] >= start_dt_obj) & (df_filtered[date_column] <= end_dt_obj)]
|
40 |
+
elif start_dt_obj:
|
41 |
+
df_filtered[date_column] = df_filtered[date_column].dt.normalize()
|
42 |
+
return df_filtered[df_filtered[date_column] >= start_dt_obj]
|
43 |
+
elif end_dt_obj:
|
44 |
+
df_filtered[date_column] = df_filtered[date_column].dt.normalize()
|
45 |
+
return df_filtered[df_filtered[date_column] <= end_dt_obj]
|
46 |
+
return df_filtered # No date filtering if neither start_date nor end_date is provided
|
47 |
+
|
48 |
+
|
49 |
+
def prepare_filtered_analytics_data(token_state_value, date_filter_option, custom_start_date, custom_end_date):
|
50 |
+
"""
|
51 |
+
Retrieves data from token_state, determines date range, filters posts and mentions.
|
52 |
+
Returns filtered_posts_df, filtered_mentions_df, follower_stats_df (unfiltered),
|
53 |
+
and the determined start_dt, end_dt for messaging.
|
54 |
+
"""
|
55 |
+
logging.info(f"Preparing filtered analytics data. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
|
56 |
+
|
57 |
+
posts_df = token_state_value.get("bubble_posts_df", pd.DataFrame())
|
58 |
+
mentions_df = token_state_value.get("bubble_mentions_df", pd.DataFrame())
|
59 |
+
follower_stats_df = token_state_value.get("bubble_follower_stats_df", pd.DataFrame())
|
60 |
+
|
61 |
+
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
|
62 |
+
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
|
63 |
+
|
64 |
+
# Determine date range for filtering posts and mentions
|
65 |
+
# Ensure end_dt is also normalized if it's datetime.now() for consistent comparison with normalized dates
|
66 |
+
current_time_normalized = datetime.now().normalize()
|
67 |
+
end_dt_filter = current_time_normalized
|
68 |
+
start_dt_filter = None
|
69 |
+
|
70 |
+
if date_filter_option == "Last 7 Days":
|
71 |
+
start_dt_filter = current_time_normalized - timedelta(days=6) # Inclusive of start day
|
72 |
+
elif date_filter_option == "Last 30 Days":
|
73 |
+
start_dt_filter = current_time_normalized - timedelta(days=29) # Inclusive of start day
|
74 |
+
elif date_filter_option == "Custom Range":
|
75 |
+
start_dt_filter = pd.to_datetime(custom_start_date, errors='coerce').normalize() if custom_start_date else None
|
76 |
+
# If custom_end_date is not provided, use current_time_normalized for end_dt_filter
|
77 |
+
end_dt_filter = pd.to_datetime(custom_end_date, errors='coerce').normalize() if custom_end_date else current_time_normalized
|
78 |
+
# "All Time" means start_dt_filter remains None, end_dt_filter effectively means up to now or unbounded if None
|
79 |
+
|
80 |
+
logging.info(f"Date range for filtering: Start: {start_dt_filter}, End: {end_dt_filter}")
|
81 |
+
|
82 |
+
# Filter DataFrames
|
83 |
+
filtered_posts_data = pd.DataFrame()
|
84 |
+
if not posts_df.empty:
|
85 |
+
filtered_posts_data = filter_dataframe_by_date(posts_df, date_column_posts, start_dt_filter, end_dt_filter)
|
86 |
+
|
87 |
+
filtered_mentions_data = pd.DataFrame()
|
88 |
+
if not mentions_df.empty:
|
89 |
+
filtered_mentions_data = filter_dataframe_by_date(mentions_df, date_column_mentions, start_dt_filter, end_dt_filter)
|
90 |
+
|
91 |
+
logging.info(f"Processed - Filtered posts: {len(filtered_posts_data)} rows, Filtered Mentions: {len(filtered_mentions_data)} rows.")
|
92 |
+
|
93 |
+
return filtered_posts_data, filtered_mentions_data, follower_stats_df, start_dt_filter, end_dt_filter
|