Spaces:
Running
Running
Update Linkedin_Data_API_Calls.py
Browse files- Linkedin_Data_API_Calls.py +283 -115
Linkedin_Data_API_Calls.py
CHANGED
@@ -4,180 +4,348 @@ import html
|
|
4 |
from datetime import datetime
|
5 |
from collections import defaultdict
|
6 |
from transformers import pipeline
|
|
|
7 |
from sessions import create_session
|
8 |
from error_handling import display_error
|
9 |
from posts_categorization import batch_summarize_and_classify
|
10 |
import logging
|
11 |
|
12 |
-
|
|
|
13 |
|
14 |
API_V2_BASE = 'https://api.linkedin.com/v2'
|
15 |
-
API_REST_BASE = "https://api.linkedin.com/rest"
|
16 |
|
|
|
17 |
sentiment_pipeline = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def fetch_comments(comm_client_id, token_dict, post_urns, stats_map):
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
for post_urn in post_urns:
|
|
|
26 |
if stats_map.get(post_urn, {}).get('commentCount', 0) == 0:
|
|
|
|
|
27 |
continue
|
|
|
28 |
try:
|
|
|
|
|
|
|
29 |
url = f"{API_REST_BASE}/socialActions/{post_urn}/comments"
|
30 |
-
|
|
|
|
|
31 |
if response.status_code == 200:
|
32 |
elements = response.json().get('elements', [])
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
else:
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
sentiment_counts = defaultdict(int)
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
47 |
continue
|
48 |
try:
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
if label in ['POSITIVE', 'VERY POSITIVE']:
|
52 |
sentiment_counts['Positive π'] += 1
|
53 |
elif label in ['NEGATIVE', 'VERY NEGATIVE']:
|
54 |
sentiment_counts['Negative π'] += 1
|
55 |
elif label == 'NEUTRAL':
|
56 |
sentiment_counts['Neutral π'] += 1
|
57 |
-
else:
|
58 |
sentiment_counts['Unknown'] += 1
|
59 |
-
|
60 |
-
except:
|
|
|
61 |
sentiment_counts['Error'] += 1
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
72 |
|
73 |
-
posts_url = f"{API_REST_BASE}/posts?author={org_urn}&q=author&count={count}&sortBy=LAST_MODIFIED"
|
74 |
-
try:
|
75 |
-
resp = session.get(posts_url)
|
76 |
-
resp.raise_for_status()
|
77 |
-
raw_posts = resp.json().get("elements", [])
|
78 |
-
except requests.exceptions.RequestException as e:
|
79 |
-
status = getattr(e.response, 'status_code', 'N/A')
|
80 |
-
raise ValueError(f"Failed to fetch posts (Status: {status})") from e
|
81 |
-
|
82 |
-
if not raw_posts:
|
83 |
-
return [], org_name, {}
|
84 |
-
|
85 |
-
post_urns = [p["id"] for p in raw_posts if ":share:" in p["id"] or ":ugcPost:" in p["id"]]
|
86 |
-
stats_map = {}
|
87 |
-
post_texts = [{"text": p.get("commentary") or p.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text", "")} for p in raw_posts]
|
88 |
-
structured_results = batch_summarize_and_classify(post_texts)
|
89 |
-
|
90 |
-
for i in range(0, len(post_urns), 20):
|
91 |
-
batch = post_urns[i:i+20]
|
92 |
-
params = {'q': 'organizationalEntity', 'organizationalEntity': org_urn}
|
93 |
-
for idx, urn in enumerate(batch):
|
94 |
-
key = f"shares[{idx}]" if ":share:" in urn else f"ugcPosts[{idx}]"
|
95 |
-
params[key] = urn
|
96 |
-
try:
|
97 |
-
stat_resp = session.get(f"{API_REST_BASE}/organizationalEntityShareStatistics", params=params)
|
98 |
-
stat_resp.raise_for_status()
|
99 |
-
for stat in stat_resp.json().get("elements", []):
|
100 |
-
urn = stat.get("share") or stat.get("ugcPost")
|
101 |
-
if urn:
|
102 |
-
stats_map[urn] = stat.get("totalShareStatistics", {})
|
103 |
-
except:
|
104 |
-
continue
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
112 |
stats = stats_map.get(post_id, {})
|
113 |
-
timestamp = post.get("publishedAt") or post.get("createdAt")
|
114 |
-
when = datetime.fromtimestamp(timestamp / 1000).strftime("%Y-%m-%d %H:%M") if timestamp else "Unknown"
|
115 |
-
text = post.get("commentary") or post.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text") or "[No text]"
|
116 |
-
text = html.escape(text[:250]).replace("\n", "<br>") + ("..." if len(text) > 250 else "")
|
117 |
|
118 |
likes = stats.get("likeCount", 0)
|
119 |
-
|
|
|
|
|
|
|
120 |
clicks = stats.get("clickCount", 0)
|
121 |
shares = stats.get("shareCount", 0)
|
122 |
impressions = stats.get("impressionCount", 0)
|
123 |
-
|
124 |
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
-
|
128 |
"id": post_id,
|
129 |
-
"when":
|
130 |
-
"
|
|
|
131 |
"likes": likes,
|
132 |
-
"
|
133 |
"clicks": clicks,
|
134 |
"shares": shares,
|
135 |
"impressions": impressions,
|
136 |
-
"
|
|
|
|
|
137 |
"sentiment": sentiment_info["sentiment"],
|
138 |
-
"sentiment_percent": sentiment_info["percentage"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
})
|
140 |
-
|
141 |
-
|
142 |
-
for post, structured in zip(posts, structured_results):
|
143 |
-
post["summary"] = structured["summary"]
|
144 |
-
post["category"] = structured["category"]
|
145 |
|
146 |
-
return posts, org_name, sentiments
|
147 |
|
148 |
-
def prepare_data_for_bubble(
|
|
|
|
|
|
|
|
|
|
|
149 |
li_posts = []
|
150 |
li_post_stats = []
|
151 |
-
li_post_comments = []
|
|
|
152 |
|
153 |
-
for
|
|
|
154 |
li_posts.append({
|
155 |
-
"author_urn":
|
156 |
-
"id":
|
157 |
-
"is_ad":
|
158 |
-
"media_type":
|
159 |
-
"published_at":
|
160 |
-
"
|
161 |
-
"
|
|
|
|
|
|
|
162 |
})
|
163 |
|
|
|
164 |
li_post_stats.append({
|
165 |
-
"clickCount":
|
166 |
-
"
|
167 |
-
"
|
168 |
-
"impressionCount":
|
169 |
-
"likeCount":
|
170 |
-
"shareCount":
|
171 |
-
"uniqueImpressionsCount":
|
172 |
-
"post_id":
|
173 |
})
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
178 |
li_post_comments.append({
|
179 |
-
"comment_text":
|
180 |
-
"post_id":
|
|
|
181 |
})
|
182 |
-
|
183 |
-
|
|
|
|
4 |
from datetime import datetime
|
5 |
from collections import defaultdict
|
6 |
from transformers import pipeline
|
7 |
+
|
8 |
from sessions import create_session
|
9 |
from error_handling import display_error
|
10 |
from posts_categorization import batch_summarize_and_classify
|
11 |
import logging
|
12 |
|
13 |
+
|
14 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
15 |
|
16 |
API_V2_BASE = 'https://api.linkedin.com/v2'
|
17 |
+
API_REST_BASE = "https://api.linkedin.com/rest" # Corrected from API_REST_BASE to API_REST_BASE
|
18 |
|
19 |
+
# Initialize sentiment pipeline (consider loading it once globally if this module is imported multiple times)
|
20 |
sentiment_pipeline = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
|
21 |
|
22 |
+
def fetch_linkedin_posts_core(comm_client_id, community_token, org_urn, count=100):
|
23 |
+
"""
|
24 |
+
Fetches raw posts, their basic statistics, and performs summarization/categorization.
|
25 |
+
Does NOT fetch comments or analyze sentiment.
|
26 |
+
"""
|
27 |
+
token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
|
28 |
+
session = create_session(comm_client_id, token=token_dict)
|
29 |
+
org_name = "GRLS" # Placeholder or fetch if necessary
|
30 |
+
|
31 |
+
posts_url = f"{API_REST_BASE}/posts?author={org_urn}&q=author&count={count}&sortBy=LAST_MODIFIED"
|
32 |
+
logging.info(f"Fetching posts from URL: {posts_url}")
|
33 |
+
try:
|
34 |
+
resp = session.get(posts_url)
|
35 |
+
resp.raise_for_status()
|
36 |
+
raw_posts_api = resp.json().get("elements", [])
|
37 |
+
logging.info(f"Fetched {len(raw_posts_api)} raw posts from API.")
|
38 |
+
except requests.exceptions.RequestException as e:
|
39 |
+
status = getattr(e.response, 'status_code', 'N/A')
|
40 |
+
logging.error(f"Failed to fetch posts (Status: {status}): {e}")
|
41 |
+
raise ValueError(f"Failed to fetch posts (Status: {status})") from e
|
42 |
+
|
43 |
+
if not raw_posts_api:
|
44 |
+
logging.info("No raw posts found.")
|
45 |
+
return [], {}, org_name
|
46 |
+
|
47 |
+
# Filter for valid post types if necessary, e.g., shares or ugcPosts
|
48 |
+
# post_urns_for_stats = [p["id"] for p in raw_posts_api if ":share:" in p["id"] or ":ugcPost:" in p["id"]]
|
49 |
+
post_urns_for_stats = [p["id"] for p in raw_posts_api if p.get("id")]
|
50 |
+
|
51 |
+
|
52 |
+
# Prepare texts for summarization/classification
|
53 |
+
post_texts_for_nlp = []
|
54 |
+
for p in raw_posts_api:
|
55 |
+
text_content = p.get("commentary") or \
|
56 |
+
p.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text", "") or \
|
57 |
+
"[No text content]"
|
58 |
+
post_texts_for_nlp.append({"text": text_content, "id": p.get("id")})
|
59 |
+
|
60 |
+
logging.info(f"Prepared {len(post_texts_for_nlp)} posts for NLP.")
|
61 |
+
structured_results_list = batch_summarize_and_classify(post_texts_for_nlp)
|
62 |
+
# Create a dictionary for easy lookup of structured results by post ID
|
63 |
+
structured_results_map = {res["id"]: res for res in structured_results_list if "id" in res}
|
64 |
+
|
65 |
+
|
66 |
+
# Fetch statistics
|
67 |
+
stats_map = {}
|
68 |
+
if post_urns_for_stats:
|
69 |
+
for i in range(0, len(post_urns_for_stats), 20): # LinkedIn API often has batch limits
|
70 |
+
batch_urns = post_urns_for_stats[i:i+20]
|
71 |
+
params = {'q': 'organizationalEntity', 'organizationalEntity': org_urn}
|
72 |
+
for idx, urn_str in enumerate(batch_urns):
|
73 |
+
# Determine if it's a share or ugcPost based on URN structure (simplified)
|
74 |
+
key_prefix = "shares" if ":share:" in urn_str else "ugcPosts"
|
75 |
+
params[f"{key_prefix}[{idx}]"] = urn_str
|
76 |
+
|
77 |
+
try:
|
78 |
+
logging.info(f"Fetching stats for batch starting with URN: {batch_urns[0]}")
|
79 |
+
stat_resp = session.get(f"{API_REST_BASE}/organizationalEntityShareStatistics", params=params)
|
80 |
+
stat_resp.raise_for_status()
|
81 |
+
for stat_element in stat_resp.json().get("elements", []):
|
82 |
+
urn = stat_element.get("share") or stat_element.get("ugcPost")
|
83 |
+
if urn:
|
84 |
+
stats_map[urn] = stat_element.get("totalShareStatistics", {})
|
85 |
+
logging.info(f"Successfully fetched stats for {len(batch_urns)} URNs. Current stats_map size: {len(stats_map)}")
|
86 |
+
except requests.exceptions.RequestException as e:
|
87 |
+
logging.warning(f"Failed to fetch stats for a batch: {e}. Response: {e.response.text if e.response else 'No response'}")
|
88 |
+
# Continue to next batch, some stats might be missing
|
89 |
+
except json.JSONDecodeError as e:
|
90 |
+
logging.warning(f"Failed to decode JSON from stats response: {e}. Response: {stat_resp.text if stat_resp else 'No response text'}")
|
91 |
+
|
92 |
+
|
93 |
+
processed_raw_posts = []
|
94 |
+
for p in raw_posts_api:
|
95 |
+
post_id = p.get("id")
|
96 |
+
if not post_id:
|
97 |
+
logging.warning("Skipping raw post due to missing ID.")
|
98 |
+
continue
|
99 |
+
|
100 |
+
text_content = p.get("commentary") or \
|
101 |
+
p.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text", "") or \
|
102 |
+
"[No text content]"
|
103 |
+
|
104 |
+
timestamp = p.get("publishedAt") or p.get("createdAt")
|
105 |
+
published_at_iso = datetime.fromtimestamp(timestamp / 1000).isoformat() if timestamp else None
|
106 |
+
|
107 |
+
structured_res = structured_results_map.get(post_id, {"summary": "N/A", "category": "N/A"})
|
108 |
+
|
109 |
+
processed_raw_posts.append({
|
110 |
+
"id": post_id,
|
111 |
+
"raw_text": text_content,
|
112 |
+
"summary": structured_res["summary"],
|
113 |
+
"category": structured_res["category"],
|
114 |
+
"published_at_timestamp": timestamp,
|
115 |
+
"published_at_iso": published_at_iso,
|
116 |
+
# These are placeholders for actual fields from LinkedIn API response. Verify field names.
|
117 |
+
"author_urn": p.get("author", "urn:li:unknown"), # e.g., "urn:li:person:xxxx" or "urn:li:organization:xxxx"
|
118 |
+
"is_ad": p.get("isSponsored", False), # LinkedIn might use a different field like 'sponsored' or 'promoted'
|
119 |
+
"media_type": p.get("mediaCategory", "NONE") # e.g., ARTICLE, IMAGE, VIDEO, NONE
|
120 |
+
})
|
121 |
+
logging.info(f"Processed {len(processed_raw_posts)} posts with core data.")
|
122 |
+
return processed_raw_posts, stats_map, org_name
|
123 |
+
|
124 |
|
125 |
def fetch_comments(comm_client_id, token_dict, post_urns, stats_map):
|
126 |
+
"""
|
127 |
+
Fetches comments for a list of post URNs.
|
128 |
+
Uses stats_map to potentially skip posts with 0 comments.
|
129 |
+
"""
|
130 |
+
from requests_oauthlib import OAuth2Session # Keep import here if OAuth2Session is specific to this
|
131 |
+
|
132 |
+
linkedin_session = OAuth2Session(comm_client_id, token=token_dict)
|
133 |
+
# LinkedIn API versions can change, ensure this is up-to-date.
|
134 |
+
# Using a recent version like "202402" or as per current LinkedIn docs.
|
135 |
+
# The user had "202502", which might be a future version. Using a slightly older one for safety.
|
136 |
+
linkedin_session.headers.update({'LinkedIn-Version': "202405", 'X-Restli-Protocol-Version': '2.0.0'})
|
137 |
+
|
138 |
+
all_comments_by_post = {}
|
139 |
+
logging.info(f"Fetching comments for {len(post_urns)} posts.")
|
140 |
+
|
141 |
for post_urn in post_urns:
|
142 |
+
# Optimization: if stats show 0 comments, skip API call for this post's comments
|
143 |
if stats_map.get(post_urn, {}).get('commentCount', 0) == 0:
|
144 |
+
logging.info(f"Skipping comment fetch for {post_urn} as commentCount is 0 in stats_map.")
|
145 |
+
all_comments_by_post[post_urn] = []
|
146 |
continue
|
147 |
+
|
148 |
try:
|
149 |
+
# According to LinkedIn docs, comments are often under /socialActions/{activityUrn}/comments
|
150 |
+
# or /commentsV2?q=entity&entity={activityUrn}
|
151 |
+
# The user's URL was /socialActions/{post_urn}/comments - this seems plausible for URNs like ugcPost URNs.
|
152 |
url = f"{API_REST_BASE}/socialActions/{post_urn}/comments"
|
153 |
+
logging.debug(f"Fetching comments from URL: {url} for post URN: {post_urn}")
|
154 |
+
response = linkedin_session.get(url)
|
155 |
+
|
156 |
if response.status_code == 200:
|
157 |
elements = response.json().get('elements', [])
|
158 |
+
comments_texts = [
|
159 |
+
c.get('message', {}).get('text')
|
160 |
+
for c in elements
|
161 |
+
if c.get('message') and c.get('message', {}).get('text')
|
162 |
+
]
|
163 |
+
all_comments_by_post[post_urn] = comments_texts
|
164 |
+
logging.info(f"Fetched {len(comments_texts)} comments for {post_urn}.")
|
165 |
+
elif response.status_code == 403: # Forbidden, often permissions or versioning
|
166 |
+
logging.warning(f"Forbidden (403) to fetch comments for {post_urn}. URL: {url}. Response: {response.text}")
|
167 |
+
all_comments_by_post[post_urn] = []
|
168 |
+
elif response.status_code == 404: # Not found
|
169 |
+
logging.warning(f"Comments not found (404) for {post_urn}. URL: {url}. Response: {response.text}")
|
170 |
+
all_comments_by_post[post_urn] = []
|
171 |
else:
|
172 |
+
logging.error(f"Error fetching comments for {post_urn}. Status: {response.status_code}. Response: {response.text}")
|
173 |
+
all_comments_by_post[post_urn] = []
|
174 |
+
except requests.exceptions.RequestException as e:
|
175 |
+
logging.error(f"RequestException fetching comments for {post_urn}: {e}")
|
176 |
+
all_comments_by_post[post_urn] = []
|
177 |
+
except Exception as e: # Catch any other unexpected errors
|
178 |
+
logging.error(f"Unexpected error fetching comments for {post_urn}: {e}")
|
179 |
+
all_comments_by_post[post_urn] = []
|
180 |
+
|
181 |
+
return all_comments_by_post
|
182 |
+
|
183 |
+
def analyze_sentiment(all_comments_data):
|
184 |
+
"""
|
185 |
+
Analyzes sentiment for comments grouped by post_urn.
|
186 |
+
all_comments_data is a dict: {post_urn: [comment_text_1, comment_text_2,...]}
|
187 |
+
Returns a dict: {post_urn: {"sentiment": "DominantSentiment", "percentage": X.X}}
|
188 |
+
"""
|
189 |
+
results_by_post = {}
|
190 |
+
logging.info(f"Analyzing sentiment for comments from {len(all_comments_data)} posts.")
|
191 |
+
for post_urn, comments_list in all_comments_data.items():
|
192 |
sentiment_counts = defaultdict(int)
|
193 |
+
total_valid_comments_for_post = 0
|
194 |
+
|
195 |
+
if not comments_list:
|
196 |
+
results_by_post[post_urn] = {"sentiment": "Neutral π", "percentage": 0.0, "details": sentiment_counts}
|
197 |
+
continue
|
198 |
+
|
199 |
+
for comment_text in comments_list:
|
200 |
+
if not comment_text or not comment_text.strip(): # Skip empty comments
|
201 |
continue
|
202 |
try:
|
203 |
+
# The pipeline expects a string or list of strings.
|
204 |
+
# Ensure comment_text is a string.
|
205 |
+
analysis_result = sentiment_pipeline(str(comment_text))
|
206 |
+
label = analysis_result[0]['label'].upper()
|
207 |
+
|
208 |
if label in ['POSITIVE', 'VERY POSITIVE']:
|
209 |
sentiment_counts['Positive π'] += 1
|
210 |
elif label in ['NEGATIVE', 'VERY NEGATIVE']:
|
211 |
sentiment_counts['Negative π'] += 1
|
212 |
elif label == 'NEUTRAL':
|
213 |
sentiment_counts['Neutral π'] += 1
|
214 |
+
else: # Other labels from the model
|
215 |
sentiment_counts['Unknown'] += 1
|
216 |
+
total_valid_comments_for_post += 1
|
217 |
+
except Exception as e:
|
218 |
+
logging.error(f"Sentiment analysis failed for comment under {post_urn}: '{comment_text[:50]}...'. Error: {e}")
|
219 |
sentiment_counts['Error'] += 1
|
220 |
+
|
221 |
+
if total_valid_comments_for_post > 0:
|
222 |
+
dominant_sentiment = max(sentiment_counts, key=sentiment_counts.get, default='Neutral π')
|
223 |
+
percentage = round((sentiment_counts[dominant_sentiment] / total_valid_comments_for_post) * 100, 1)
|
224 |
+
else: # No valid comments to analyze
|
225 |
+
dominant_sentiment = 'Neutral π'
|
226 |
+
percentage = 0.0
|
227 |
+
if sentiment_counts['Error'] > 0 : # If there were only errors
|
228 |
+
dominant_sentiment = 'Error'
|
229 |
|
230 |
+
results_by_post[post_urn] = {
|
231 |
+
"sentiment": dominant_sentiment,
|
232 |
+
"percentage": percentage,
|
233 |
+
"details": dict(sentiment_counts) # Store counts for more detailed reporting if needed
|
234 |
+
}
|
235 |
+
logging.debug(f"Sentiment for {post_urn}: {results_by_post[post_urn]}")
|
236 |
+
|
237 |
+
return results_by_post
|
238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
+
def compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post):
|
241 |
+
"""
|
242 |
+
Combines processed raw post data with their statistics and overall sentiment.
|
243 |
+
"""
|
244 |
+
detailed_post_list = []
|
245 |
+
logging.info(f"Compiling detailed data for {len(processed_raw_posts)} posts.")
|
246 |
+
for proc_post in processed_raw_posts:
|
247 |
+
post_id = proc_post["id"]
|
248 |
stats = stats_map.get(post_id, {})
|
|
|
|
|
|
|
|
|
249 |
|
250 |
likes = stats.get("likeCount", 0)
|
251 |
+
# Use 'commentSummary' from stats for comment count if available, else 'commentCount'
|
252 |
+
# LinkedIn sometimes has commentSummary.totalComments
|
253 |
+
comments_stat_count = stats.get("commentSummary", {}).get("totalComments") if "commentSummary" in stats else stats.get("commentCount", 0)
|
254 |
+
|
255 |
clicks = stats.get("clickCount", 0)
|
256 |
shares = stats.get("shareCount", 0)
|
257 |
impressions = stats.get("impressionCount", 0)
|
258 |
+
unique_impressions = stats.get("uniqueImpressionsCount", 0) # Ensure this field is in API response
|
259 |
|
260 |
+
# Calculate engagement: (likes + comments + clicks + shares) / impressions
|
261 |
+
# Ensure impressions is not zero to avoid DivisionByZeroError
|
262 |
+
engagement_numerator = likes + comments_stat_count + clicks + shares
|
263 |
+
engagement_rate = (engagement_numerator / impressions * 100) if impressions else 0.0
|
264 |
+
|
265 |
+
sentiment_info = sentiments_per_post.get(post_id, {"sentiment": "Neutral π", "percentage": 0.0})
|
266 |
+
|
267 |
+
# Format text for display (escaped and truncated)
|
268 |
+
display_text = html.escape(proc_post["raw_text"][:250]).replace("\n", "<br>") + \
|
269 |
+
("..." if len(proc_post["raw_text"]) > 250 else "")
|
270 |
+
|
271 |
+
when_formatted = datetime.fromtimestamp(proc_post["published_at_timestamp"] / 1000).strftime("%Y-%m-%d %H:%M") \
|
272 |
+
if proc_post["published_at_timestamp"] else "Unknown"
|
273 |
|
274 |
+
detailed_post_list.append({
|
275 |
"id": post_id,
|
276 |
+
"when": when_formatted,
|
277 |
+
"text_for_display": display_text, # Shortened, escaped text
|
278 |
+
"raw_text": proc_post["raw_text"], # Full original text
|
279 |
"likes": likes,
|
280 |
+
"comments_stat_count": comments_stat_count, # Count from post statistics
|
281 |
"clicks": clicks,
|
282 |
"shares": shares,
|
283 |
"impressions": impressions,
|
284 |
+
"uniqueImpressionsCount": unique_impressions,
|
285 |
+
"engagement": f"{engagement_rate:.2f}%", # Formatted string
|
286 |
+
"engagement_raw": engagement_rate, # Raw float for potential calculations
|
287 |
"sentiment": sentiment_info["sentiment"],
|
288 |
+
"sentiment_percent": sentiment_info["percentage"],
|
289 |
+
"sentiment_details": sentiment_info.get("details", {}), # Detailed counts
|
290 |
+
"summary": proc_post["summary"],
|
291 |
+
"category": proc_post["category"],
|
292 |
+
"author_urn": proc_post["author_urn"],
|
293 |
+
"is_ad": proc_post["is_ad"],
|
294 |
+
"media_type": proc_post["media_type"],
|
295 |
+
"published_at": proc_post["published_at_iso"] # ISO format datetime string
|
296 |
})
|
297 |
+
logging.info(f"Compiled {len(detailed_post_list)} detailed posts.")
|
298 |
+
return detailed_post_list
|
|
|
|
|
|
|
299 |
|
|
|
300 |
|
301 |
+
def prepare_data_for_bubble(detailed_posts, all_actual_comments_data):
|
302 |
+
"""
|
303 |
+
Prepares data lists for uploading to Bubble.
|
304 |
+
- detailed_posts: List of comprehensively compiled post objects.
|
305 |
+
- all_actual_comments_data: Dict of {post_urn: [comment_texts]} from fetch_comments.
|
306 |
+
"""
|
307 |
li_posts = []
|
308 |
li_post_stats = []
|
309 |
+
li_post_comments = [] # For individual comments
|
310 |
+
logging.info("Preparing data for Bubble.")
|
311 |
|
312 |
+
for post_data in detailed_posts:
|
313 |
+
# Data for LI_post table in Bubble
|
314 |
li_posts.append({
|
315 |
+
"author_urn": post_data["author_urn"],
|
316 |
+
"id": post_data["id"], # Post URN
|
317 |
+
"is_ad": post_data["is_ad"],
|
318 |
+
"media_type": post_data["media_type"],
|
319 |
+
"published_at": post_data["published_at"], # ISO datetime string
|
320 |
+
"sentiment_overall": post_data["sentiment"], # Overall sentiment of the post based on its comments
|
321 |
+
"text_content": post_data["raw_text"], # Storing the full raw text
|
322 |
+
"summary_text": post_data["summary"],
|
323 |
+
"category_assigned": post_data["category"],
|
324 |
+
# Add any other fields from post_data needed for LI_post table
|
325 |
})
|
326 |
|
327 |
+
# Data for LI_post_stats table in Bubble
|
328 |
li_post_stats.append({
|
329 |
+
"clickCount": post_data["clicks"],
|
330 |
+
"commentCount_from_stats": post_data["comments_stat_count"], # From post's own stats
|
331 |
+
"engagement_rate": post_data["engagement"], # Formatted string e.g., "12.34%"
|
332 |
+
"impressionCount": post_data["impressions"],
|
333 |
+
"likeCount": post_data["likes"],
|
334 |
+
"shareCount": post_data["shares"],
|
335 |
+
"uniqueImpressionsCount": post_data["uniqueImpressionsCount"],
|
336 |
+
"post_id": post_data["id"] # Foreign key to LI_post
|
337 |
})
|
338 |
|
339 |
+
# Data for LI_post_comments table in Bubble (individual comments)
|
340 |
+
# This iterates through the actual comments fetched, not just the count.
|
341 |
+
for post_urn, comments_text_list in all_actual_comments_data.items():
|
342 |
+
for single_comment_text in comments_text_list:
|
343 |
+
if single_comment_text and single_comment_text.strip(): # Ensure comment text is not empty
|
344 |
li_post_comments.append({
|
345 |
+
"comment_text": single_comment_text,
|
346 |
+
"post_id": post_urn # Foreign key to LI_post
|
347 |
+
# Could add sentiment per comment here if analyzed at that granularity
|
348 |
})
|
349 |
+
|
350 |
+
logging.info(f"Prepared {len(li_posts)} posts, {len(li_post_stats)} stats entries, and {len(li_post_comments)} comments for Bubble.")
|
351 |
+
return li_posts, li_post_stats, li_post_comments
|