Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
import os
|
4 |
import logging
|
5 |
import html
|
6 |
-
import pandas as pd
|
7 |
|
8 |
# Import functions from your custom modules
|
9 |
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
|
@@ -35,69 +36,77 @@ def process_and_store_bubble_token(url_user_token, org_urn, token_state):
|
|
35 |
"""
|
36 |
Processes the user token from the URL, fetches LinkedIn token from Bubble,
|
37 |
fetches initial posts from Bubble, and updates the token state and UI accordingly.
|
|
|
38 |
"""
|
39 |
logging.info(f"Processing token with URL user token: '{url_user_token}', Org URN: '{org_urn}'")
|
|
|
40 |
# Initialize or copy existing state, adding bubble_posts_df
|
41 |
new_state = token_state.copy() if token_state else {"token": None, "client_id": None, "org_urn": None, "bubble_posts_df": None}
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
variant="primary",
|
48 |
-
visible=False,
|
49 |
-
interactive=False
|
50 |
-
)
|
51 |
|
52 |
client_id = os.environ.get("Linkedin_client_id")
|
53 |
if not client_id:
|
54 |
logging.error("CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.")
|
55 |
new_state["client_id"] = "ENV VAR MISSING"
|
56 |
-
# Even if client_id is missing, we might still be able to fetch from Bubble if org_urn is present
|
57 |
-
# and then decide button visibility.
|
58 |
else:
|
59 |
new_state["client_id"] = client_id
|
60 |
|
61 |
# Attempt to fetch LinkedIn token from Bubble (related to LinkedIn API access)
|
62 |
if url_user_token and "not found" not in url_user_token and "Could not access" not in url_user_token:
|
63 |
logging.info(f"Attempting to fetch LinkedIn token from Bubble with user token: {url_user_token}")
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
70 |
else:
|
|
|
71 |
logging.info("No valid URL user token provided for LinkedIn token fetch, or an error was indicated.")
|
72 |
|
73 |
-
# Fetch posts from Bubble using org_urn
|
74 |
current_org_urn = new_state.get("org_urn")
|
75 |
if current_org_urn:
|
76 |
logging.info(f"Attempting to fetch posts from Bubble for org_urn: {current_org_urn}")
|
77 |
try:
|
78 |
# Assuming fetch_posts_from_bubble returns a Pandas DataFrame or None
|
79 |
df_bubble_posts = fetch_posts_from_bubble(current_org_urn)
|
80 |
-
new_state["bubble_posts_df"] = df_bubble_posts
|
81 |
|
82 |
if df_bubble_posts is not None and not df_bubble_posts.empty:
|
83 |
logging.info(f"β
Successfully fetched {len(df_bubble_posts)} posts from Bubble. Sync button will be enabled.")
|
84 |
-
|
85 |
-
|
86 |
-
variant="primary",
|
87 |
-
visible=True,
|
88 |
-
interactive=True
|
89 |
-
)
|
90 |
else:
|
91 |
logging.info("βΉοΈ No posts found in Bubble for this organization or DataFrame is empty. Sync button will remain hidden.")
|
|
|
92 |
except Exception as e:
|
93 |
logging.error(f"β Error fetching posts from Bubble: {e}")
|
94 |
-
#
|
95 |
else:
|
96 |
logging.warning("Org URN not available in state. Cannot fetch posts from Bubble.")
|
|
|
97 |
|
98 |
-
token_status_message = check_token_status(new_state)
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
def guarded_fetch_posts(token_state):
|
103 |
"""
|
@@ -105,12 +114,12 @@ def guarded_fetch_posts(token_state):
|
|
105 |
This function is guarded by token availability.
|
106 |
"""
|
107 |
logging.info("Starting guarded_fetch_posts process.")
|
108 |
-
if not token_state or not token_state.get("token"):
|
109 |
logging.error("Access denied for guarded_fetch_posts. No LinkedIn token available.")
|
110 |
-
return "<p style='color:red; text-align:center;'>β Access denied. LinkedIn token not available.</p>"
|
111 |
|
112 |
client_id = token_state.get("client_id")
|
113 |
-
token_dict = token_state.get("token")
|
114 |
org_urn = token_state.get('org_urn')
|
115 |
|
116 |
if not org_urn:
|
@@ -118,20 +127,25 @@ def guarded_fetch_posts(token_state):
|
|
118 |
return "<p style='color:red; text-align:center;'>β Configuration error: Organization URN missing.</p>"
|
119 |
if not client_id or client_id == "ENV VAR MISSING":
|
120 |
logging.error("Client ID not found or missing in token_state for guarded_fetch_posts.")
|
121 |
-
return "<p style='color:red; text-align:center;'>β Configuration error: LinkedIn Client ID missing.</p>"
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
try:
|
124 |
-
logging.info(f"Step 1: Fetching core posts for org_urn: {org_urn}")
|
125 |
processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn)
|
126 |
|
127 |
if not processed_raw_posts:
|
128 |
-
logging.info("No posts found to process after step 1.")
|
129 |
-
return "<p style='color:orange; text-align:center;'>βΉοΈ No new LinkedIn posts found to process.</p>"
|
130 |
|
131 |
post_urns = [post["id"] for post in processed_raw_posts if post.get("id")]
|
132 |
logging.info(f"Extracted {len(post_urns)} post URNs for further processing.")
|
133 |
|
134 |
-
logging.info("Step 2: Fetching comments.")
|
135 |
all_comments_data = fetch_comments(client_id, token_dict, post_urns, stats_map)
|
136 |
|
137 |
logging.info("Step 3: Analyzing sentiment.")
|
@@ -148,26 +162,20 @@ def guarded_fetch_posts(token_state):
|
|
148 |
bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
|
149 |
bulk_upload_to_bubble(li_post_comments, "LI_post_comments")
|
150 |
|
151 |
-
logging.info("Successfully fetched and uploaded posts and comments to Bubble.")
|
152 |
-
return "<p style='color:green; text-align:center;'>β
Posts and comments uploaded to Bubble.</p>"
|
153 |
|
154 |
except ValueError as ve:
|
155 |
logging.error(f"ValueError during LinkedIn data processing: {ve}")
|
156 |
return f"<p style='color:red; text-align:center;'>β Error: {html.escape(str(ve))}</p>"
|
157 |
except Exception as e:
|
158 |
-
logging.exception("An unexpected error occurred in guarded_fetch_posts.")
|
159 |
-
return "<p style='color:red; text-align:center;'>β An unexpected error occurred. Please check logs.</p>"
|
160 |
|
161 |
def guarded_fetch_dashboard(token_state):
|
162 |
"""Fetches and renders the dashboard if token is available."""
|
163 |
if not token_state or not token_state.get("token"):
|
164 |
return "β Access denied. No token available for dashboard."
|
165 |
-
# This function is not used in the current UI structure for the first tab's main content
|
166 |
-
# but kept for potential future use or if it's called elsewhere.
|
167 |
-
# The first tab's content is now primarily the button and its output.
|
168 |
-
# If you intend to display a dashboard here *after* fetching, this would need integration.
|
169 |
-
# For now, returning a placeholder or status.
|
170 |
-
# return fetch_and_render_dashboard(token_state.get("client_id"), token_state.get("token"))
|
171 |
return "<p style='text-align: center; color: #555;'>Dashboard content would load here if implemented.</p>"
|
172 |
|
173 |
|
@@ -195,50 +203,43 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
195 |
gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")
|
196 |
|
197 |
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
|
198 |
-
status_box = gr.Textbox(label="Overall Token Status", interactive=False, value="Initializing...")
|
199 |
-
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
|
200 |
|
201 |
-
# Load user token and org URN from URL parameters
|
202 |
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display])
|
203 |
|
204 |
with gr.Tabs():
|
205 |
with gr.TabItem("1οΈβ£ Dashboard & Sync"):
|
206 |
-
gr.Markdown("
|
207 |
-
"Fetch new posts from LinkedIn, analyze, and store them in Bubble.")
|
208 |
|
209 |
-
# Button is initially not visible and not interactive.
|
210 |
-
# Its state will be updated by process_and_store_bubble_token
|
211 |
sync_posts_to_bubble_btn = gr.Button(
|
212 |
-
"π Fetch, Analyze & Store
|
213 |
variant="primary",
|
214 |
visible=False,
|
215 |
interactive=False
|
216 |
)
|
217 |
|
218 |
dashboard_html_output = gr.HTML(
|
219 |
-
"<p style='text-align: center; color: #555;'>System initializing...
|
220 |
-
"
|
221 |
)
|
222 |
|
223 |
-
#
|
224 |
-
#
|
225 |
-
#
|
226 |
-
#
|
227 |
org_urn_display.change(
|
228 |
fn=process_and_store_bubble_token,
|
229 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
230 |
-
outputs=[status_box, token_state, sync_posts_to_bubble_btn]
|
231 |
)
|
232 |
-
#
|
233 |
-
# but token processing depends on url_user_token_display.
|
234 |
-
# This creates a dependency: if one changes, the function runs with current values of both.
|
235 |
url_user_token_display.change(
|
236 |
fn=process_and_store_bubble_token,
|
237 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
238 |
outputs=[status_box, token_state, sync_posts_to_bubble_btn]
|
239 |
)
|
240 |
|
241 |
-
# Click handler for the sync button
|
242 |
sync_posts_to_bubble_btn.click(
|
243 |
fn=guarded_fetch_posts,
|
244 |
inputs=[token_state],
|
@@ -246,9 +247,9 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
246 |
)
|
247 |
|
248 |
with gr.TabItem("2οΈβ£ Analytics"):
|
249 |
-
gr.Markdown("View follower count and monthly gains for your organization.")
|
250 |
fetch_analytics_btn = gr.Button("π Fetch Follower Analytics", variant="primary")
|
251 |
-
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
|
252 |
|
253 |
with gr.Row():
|
254 |
follower_plot, growth_plot = gr.Plot(), gr.Plot()
|
@@ -269,9 +270,9 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
269 |
)
|
270 |
|
271 |
with gr.TabItem("3οΈβ£ Mentions"):
|
272 |
-
gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
|
273 |
fetch_mentions_btn = gr.Button("π§ Fetch Mentions & Sentiment", variant="primary")
|
274 |
-
mentions_html = gr.HTML("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
|
275 |
mentions_plot = gr.Plot()
|
276 |
fetch_mentions_btn.click(
|
277 |
fn=run_mentions_and_load,
|
@@ -279,18 +280,14 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
279 |
outputs=[mentions_html, mentions_plot]
|
280 |
)
|
281 |
|
282 |
-
#
|
283 |
-
# The
|
284 |
app.load(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
|
285 |
-
# Timer to periodically update the token status display
|
286 |
gr.Timer(15.0).tick(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
|
287 |
|
288 |
|
289 |
if __name__ == "__main__":
|
290 |
if not os.environ.get("Linkedin_client_id"):
|
291 |
logging.warning("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly for LinkedIn API calls.")
|
292 |
-
# Ensure the app launches.
|
293 |
-
# For testing, you might want share=False or specific server_name/port.
|
294 |
-
# share=True is useful for public sharing via Gradio link.
|
295 |
app.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
296 |
-
# app.launch(share=True) # Simpler launch for testing if specific port/host not needed
|
|
|
1 |
+
# -- coding: utf-8 --
|
2 |
import gradio as gr
|
3 |
import json
|
4 |
import os
|
5 |
import logging
|
6 |
import html
|
7 |
+
import pandas as pd # Ensure pandas is imported if you're dealing with DataFrames
|
8 |
|
9 |
# Import functions from your custom modules
|
10 |
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
|
|
|
36 |
"""
|
37 |
Processes the user token from the URL, fetches LinkedIn token from Bubble,
|
38 |
fetches initial posts from Bubble, and updates the token state and UI accordingly.
|
39 |
+
Returns updates for status_box, token_state, and sync_posts_to_bubble_btn.
|
40 |
"""
|
41 |
logging.info(f"Processing token with URL user token: '{url_user_token}', Org URN: '{org_urn}'")
|
42 |
+
|
43 |
# Initialize or copy existing state, adding bubble_posts_df
|
44 |
new_state = token_state.copy() if token_state else {"token": None, "client_id": None, "org_urn": None, "bubble_posts_df": None}
|
45 |
+
# Ensure org_urn is updated from input, and bubble_posts_df is reset/initialized for this run.
|
46 |
+
# Token will be set later if fetched.
|
47 |
+
new_state.update({"org_urn": org_urn, "bubble_posts_df": None, "token": new_state.get("token")})
|
48 |
|
49 |
+
# Determine button properties - default to hidden and non-interactive
|
50 |
+
button_visible = False
|
51 |
+
button_interactive = False
|
|
|
|
|
|
|
|
|
52 |
|
53 |
client_id = os.environ.get("Linkedin_client_id")
|
54 |
if not client_id:
|
55 |
logging.error("CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.")
|
56 |
new_state["client_id"] = "ENV VAR MISSING"
|
|
|
|
|
57 |
else:
|
58 |
new_state["client_id"] = client_id
|
59 |
|
60 |
# Attempt to fetch LinkedIn token from Bubble (related to LinkedIn API access)
|
61 |
if url_user_token and "not found" not in url_user_token and "Could not access" not in url_user_token:
|
62 |
logging.info(f"Attempting to fetch LinkedIn token from Bubble with user token: {url_user_token}")
|
63 |
+
try:
|
64 |
+
parsed_linkedin_token = fetch_linkedin_token_from_bubble(url_user_token)
|
65 |
+
if isinstance(parsed_linkedin_token, dict) and "access_token" in parsed_linkedin_token:
|
66 |
+
new_state["token"] = parsed_linkedin_token # Update token in new_state
|
67 |
+
logging.info("β
LinkedIn Token successfully fetched from Bubble.")
|
68 |
+
else:
|
69 |
+
new_state["token"] = None # Explicitly set to None if fetch fails
|
70 |
+
logging.warning(f"β Failed to fetch a valid LinkedIn token from Bubble. Response: {parsed_linkedin_token}")
|
71 |
+
except Exception as e:
|
72 |
+
new_state["token"] = None # Explicitly set to None on error
|
73 |
+
logging.error(f"β Exception while fetching LinkedIn token from Bubble: {e}")
|
74 |
else:
|
75 |
+
new_state["token"] = None # Ensure token is None if no valid url_user_token
|
76 |
logging.info("No valid URL user token provided for LinkedIn token fetch, or an error was indicated.")
|
77 |
|
78 |
+
# Fetch posts from Bubble using org_urn
|
79 |
current_org_urn = new_state.get("org_urn")
|
80 |
if current_org_urn:
|
81 |
logging.info(f"Attempting to fetch posts from Bubble for org_urn: {current_org_urn}")
|
82 |
try:
|
83 |
# Assuming fetch_posts_from_bubble returns a Pandas DataFrame or None
|
84 |
df_bubble_posts = fetch_posts_from_bubble(current_org_urn)
|
85 |
+
new_state["bubble_posts_df"] = df_bubble_posts # Store DataFrame in state
|
86 |
|
87 |
if df_bubble_posts is not None and not df_bubble_posts.empty:
|
88 |
logging.info(f"β
Successfully fetched {len(df_bubble_posts)} posts from Bubble. Sync button will be enabled.")
|
89 |
+
button_visible = True
|
90 |
+
button_interactive = True
|
|
|
|
|
|
|
|
|
91 |
else:
|
92 |
logging.info("βΉοΈ No posts found in Bubble for this organization or DataFrame is empty. Sync button will remain hidden.")
|
93 |
+
# button_visible and button_interactive remain False
|
94 |
except Exception as e:
|
95 |
logging.error(f"β Error fetching posts from Bubble: {e}")
|
96 |
+
# button_visible and button_interactive remain False
|
97 |
else:
|
98 |
logging.warning("Org URN not available in state. Cannot fetch posts from Bubble.")
|
99 |
+
# button_visible and button_interactive remain False
|
100 |
|
101 |
+
token_status_message = check_token_status(new_state) # Check based on potentially updated new_state["token"]
|
102 |
+
|
103 |
+
# Log the determined visibility before creating the update object
|
104 |
+
logging.info(f"Token processing complete. LinkedIn Token Status: {token_status_message}. Button visible: {button_visible}, Button interactive: {button_interactive}")
|
105 |
+
|
106 |
+
# Create a gr.update object for the button
|
107 |
+
button_component_update = gr.update(visible=button_visible, interactive=button_interactive)
|
108 |
+
|
109 |
+
return token_status_message, new_state, button_component_update
|
110 |
|
111 |
def guarded_fetch_posts(token_state):
|
112 |
"""
|
|
|
114 |
This function is guarded by token availability.
|
115 |
"""
|
116 |
logging.info("Starting guarded_fetch_posts process.")
|
117 |
+
if not token_state or not token_state.get("token"): # Checks for LinkedIn token
|
118 |
logging.error("Access denied for guarded_fetch_posts. No LinkedIn token available.")
|
119 |
+
return "<p style='color:red; text-align:center;'>β Access denied. LinkedIn token not available. Please ensure token is fetched via URL parameter.</p>"
|
120 |
|
121 |
client_id = token_state.get("client_id")
|
122 |
+
token_dict = token_state.get("token") # This is the LinkedIn token dict
|
123 |
org_urn = token_state.get('org_urn')
|
124 |
|
125 |
if not org_urn:
|
|
|
127 |
return "<p style='color:red; text-align:center;'>β Configuration error: Organization URN missing.</p>"
|
128 |
if not client_id or client_id == "ENV VAR MISSING":
|
129 |
logging.error("Client ID not found or missing in token_state for guarded_fetch_posts.")
|
130 |
+
return "<p style='color:red; text-align:center;'>β Configuration error: LinkedIn Client ID missing (check .env file or environment variables).</p>"
|
131 |
+
|
132 |
+
# Additional check: Ensure the button was meant to be clickable (i.e., Bubble posts were found)
|
133 |
+
# This is an indirect check, as the button's clickability should prevent this if UI works as intended.
|
134 |
+
# However, adding a check on bubble_posts_df might be redundant if the button is correctly managed.
|
135 |
+
# For now, relying on the LinkedIn token check as the primary guard for this function.
|
136 |
|
137 |
try:
|
138 |
+
logging.info(f"Step 1: Fetching core posts for org_urn: {org_urn} using LinkedIn API.")
|
139 |
processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn)
|
140 |
|
141 |
if not processed_raw_posts:
|
142 |
+
logging.info("No posts found to process via LinkedIn API after step 1.")
|
143 |
+
return "<p style='color:orange; text-align:center;'>βΉοΈ No new LinkedIn posts found to process at this time.</p>"
|
144 |
|
145 |
post_urns = [post["id"] for post in processed_raw_posts if post.get("id")]
|
146 |
logging.info(f"Extracted {len(post_urns)} post URNs for further processing.")
|
147 |
|
148 |
+
logging.info("Step 2: Fetching comments via LinkedIn API.")
|
149 |
all_comments_data = fetch_comments(client_id, token_dict, post_urns, stats_map)
|
150 |
|
151 |
logging.info("Step 3: Analyzing sentiment.")
|
|
|
162 |
bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
|
163 |
bulk_upload_to_bubble(li_post_comments, "LI_post_comments")
|
164 |
|
165 |
+
logging.info("Successfully fetched from LinkedIn and uploaded posts and comments to Bubble.")
|
166 |
+
return "<p style='color:green; text-align:center;'>β
Posts and comments from LinkedIn uploaded to Bubble.</p>"
|
167 |
|
168 |
except ValueError as ve:
|
169 |
logging.error(f"ValueError during LinkedIn data processing: {ve}")
|
170 |
return f"<p style='color:red; text-align:center;'>β Error: {html.escape(str(ve))}</p>"
|
171 |
except Exception as e:
|
172 |
+
logging.exception("An unexpected error occurred in guarded_fetch_posts.") # Logs full traceback
|
173 |
+
return "<p style='color:red; text-align:center;'>β An unexpected error occurred while processing LinkedIn data. Please check logs.</p>"
|
174 |
|
175 |
def guarded_fetch_dashboard(token_state):
|
176 |
"""Fetches and renders the dashboard if token is available."""
|
177 |
if not token_state or not token_state.get("token"):
|
178 |
return "β Access denied. No token available for dashboard."
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
return "<p style='text-align: center; color: #555;'>Dashboard content would load here if implemented.</p>"
|
180 |
|
181 |
|
|
|
203 |
gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")
|
204 |
|
205 |
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
|
206 |
+
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
|
207 |
+
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
|
208 |
|
|
|
209 |
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display])
|
210 |
|
211 |
with gr.Tabs():
|
212 |
with gr.TabItem("1οΈβ£ Dashboard & Sync"):
|
213 |
+
gr.Markdown("Fetch initial data from Bubble. If posts are found, you can choose to sync newer posts from LinkedIn.")
|
|
|
214 |
|
|
|
|
|
215 |
sync_posts_to_bubble_btn = gr.Button(
|
216 |
+
"π Fetch from LinkedIn, Analyze & Store to Bubble", # Updated label for clarity
|
217 |
variant="primary",
|
218 |
visible=False,
|
219 |
interactive=False
|
220 |
)
|
221 |
|
222 |
dashboard_html_output = gr.HTML(
|
223 |
+
"<p style='text-align: center; color: #555;'>System initializing... "
|
224 |
+
"Checking for existing data in Bubble. The 'Fetch from LinkedIn...' button will activate if initial data is found.</p>"
|
225 |
)
|
226 |
|
227 |
+
# Combined trigger: process tokens and Bubble data once both URL params are potentially loaded.
|
228 |
+
# Using .then() to chain after initial load.
|
229 |
+
# The `process_and_store_bubble_token` will run when `org_urn_display` (which is an output of app.load)
|
230 |
+
# receives its value.
|
231 |
org_urn_display.change(
|
232 |
fn=process_and_store_bubble_token,
|
233 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
234 |
+
outputs=[status_box, token_state, sync_posts_to_bubble_btn]
|
235 |
)
|
236 |
+
# Fallback if url_user_token_display changes after org_urn_display (less likely but for robustness)
|
|
|
|
|
237 |
url_user_token_display.change(
|
238 |
fn=process_and_store_bubble_token,
|
239 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
240 |
outputs=[status_box, token_state, sync_posts_to_bubble_btn]
|
241 |
)
|
242 |
|
|
|
243 |
sync_posts_to_bubble_btn.click(
|
244 |
fn=guarded_fetch_posts,
|
245 |
inputs=[token_state],
|
|
|
247 |
)
|
248 |
|
249 |
with gr.TabItem("2οΈβ£ Analytics"):
|
250 |
+
gr.Markdown("View follower count and monthly gains for your organization (requires LinkedIn token).")
|
251 |
fetch_analytics_btn = gr.Button("π Fetch Follower Analytics", variant="primary")
|
252 |
+
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for LinkedIn token...</p>")
|
253 |
|
254 |
with gr.Row():
|
255 |
follower_plot, growth_plot = gr.Plot(), gr.Plot()
|
|
|
270 |
)
|
271 |
|
272 |
with gr.TabItem("3οΈβ£ Mentions"):
|
273 |
+
gr.Markdown("Analyze sentiment of recent posts that mention your organization (requires LinkedIn token).")
|
274 |
fetch_mentions_btn = gr.Button("π§ Fetch Mentions & Sentiment", variant="primary")
|
275 |
+
mentions_html = gr.HTML("<p style='text-align: center; color: #555;'>Waiting for LinkedIn token...</p>")
|
276 |
mentions_plot = gr.Plot()
|
277 |
fetch_mentions_btn.click(
|
278 |
fn=run_mentions_and_load,
|
|
|
280 |
outputs=[mentions_html, mentions_plot]
|
281 |
)
|
282 |
|
283 |
+
# This app.load updates the status_box based on the initial token_state.
|
284 |
+
# The process_and_store_bubble_token function will provide a more definitive update soon after.
|
285 |
app.load(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
|
286 |
+
# Timer to periodically update the LinkedIn token status display
|
287 |
gr.Timer(15.0).tick(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
|
288 |
|
289 |
|
290 |
if __name__ == "__main__":
|
291 |
if not os.environ.get("Linkedin_client_id"):
|
292 |
logging.warning("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly for LinkedIn API calls.")
|
|
|
|
|
|
|
293 |
app.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|