Spaces:
Running
Running
Update sync_logic.py
Browse files- sync_logic.py +135 -125
sync_logic.py
CHANGED
|
@@ -268,23 +268,35 @@ def sync_linkedin_mentions(token_state):
|
|
| 268 |
return mentions_sync_message, token_state
|
| 269 |
|
| 270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
def sync_linkedin_follower_stats(token_state):
|
| 272 |
"""
|
| 273 |
Fetches new/updated LinkedIn follower statistics and uploads/updates them in Bubble,
|
| 274 |
-
if scheduled by state_manager.
|
| 275 |
-
For both monthly gains and demographics, updates counts only if the new LinkedIn count is greater.
|
| 276 |
-
Creates new records if the category/month doesn't exist.
|
| 277 |
"""
|
| 278 |
-
logging.info("Starting LinkedIn follower stats sync process check.")
|
| 279 |
|
| 280 |
if not token_state.get("fs_should_sync_now", False):
|
| 281 |
-
logging.info("Follower Stats sync: Not scheduled by state_manager. Skipping.")
|
| 282 |
return "Follower Stats: Sync not currently required by schedule. ", token_state
|
| 283 |
|
| 284 |
-
logging.info("Follower Stats sync: Proceeding as scheduled by state_manager.")
|
| 285 |
|
| 286 |
if not token_state or not token_state.get("token"):
|
| 287 |
-
logging.error("Follower Stats sync: Access denied. No LinkedIn token.")
|
| 288 |
org_urn_for_log = token_state.get('org_urn') if token_state else None
|
| 289 |
if org_urn_for_log:
|
| 290 |
token_state = _log_sync_attempt(org_urn_for_log, LOG_SUBJECT_FOLLOWER_STATS, token_state)
|
|
@@ -299,126 +311,135 @@ def sync_linkedin_follower_stats(token_state):
|
|
| 299 |
attempt_logged = False
|
| 300 |
|
| 301 |
if not org_urn or not client_id or client_id == "ENV VAR MISSING":
|
| 302 |
-
logging.error("Follower Stats sync: Configuration error (Org URN or Client ID missing).")
|
| 303 |
if org_urn:
|
| 304 |
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state)
|
| 305 |
attempt_logged = True
|
| 306 |
return "Follower Stats: Config error. ", token_state
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
logging.info(f"{bubble_follower_stats_df_orig.columns}")
|
| 310 |
-
# Ensure the BUBBLE_UNIQUE_ID_COLUMN_NAME exists in the DataFrame if it's not empty,
|
| 311 |
-
# as it's crucial for building the maps for updates.
|
| 312 |
if not bubble_follower_stats_df_orig.empty and BUBBLE_UNIQUE_ID_COLUMN_NAME not in bubble_follower_stats_df_orig.columns:
|
| 313 |
-
logging.error(f"Follower Stats sync: Critical error - '{BUBBLE_UNIQUE_ID_COLUMN_NAME}' column missing in bubble_follower_stats_df. Cannot proceed with updates.")
|
| 314 |
if org_urn:
|
| 315 |
-
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state)
|
| 316 |
attempt_logged = True
|
| 317 |
return f"Follower Stats: Config error ({BUBBLE_UNIQUE_ID_COLUMN_NAME} missing). ", token_state
|
| 318 |
|
| 319 |
-
logging.info(f"Follower stats sync proceeding for org_urn: {org_urn}")
|
| 320 |
try:
|
| 321 |
api_follower_stats = get_linkedin_follower_stats(client_id, token_dict, org_urn)
|
| 322 |
|
| 323 |
-
if not api_follower_stats:
|
| 324 |
-
logging.info(f"Follower Stats sync: No stats found via API for org {org_urn}.")
|
| 325 |
follower_stats_sync_message = "Follower Stats: None found via API. "
|
| 326 |
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state)
|
| 327 |
attempt_logged = True
|
| 328 |
return follower_stats_sync_message, token_state
|
| 329 |
|
| 330 |
stats_for_bulk_upload = []
|
| 331 |
-
records_to_update_via_patch = []
|
| 332 |
|
| 333 |
-
# --- Prepare maps for existing data in Bubble for efficient lookup ---
|
| 334 |
-
# Key: (org_urn, type, category_identifier), Value: (organic, paid, bubble_record_id)
|
| 335 |
-
# For monthly gains, category_identifier is the formatted date string.
|
| 336 |
-
# For demographics, category_identifier is the FOLLOWER_STATS_CATEGORY_COLUMN value.
|
| 337 |
existing_stats_map = {}
|
| 338 |
stats_required_cols = [
|
| 339 |
FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN,
|
| 340 |
-
FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN,
|
| 341 |
-
FOLLOWER_STATS_PAID_COLUMN,
|
| 342 |
-
BUBBLE_UNIQUE_ID_COLUMN_NAME
|
| 343 |
]
|
| 344 |
|
|
|
|
| 345 |
if not bubble_follower_stats_df_orig.empty and all(col in bubble_follower_stats_df_orig.columns for col in stats_required_cols):
|
| 346 |
-
for
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
-
key = (
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
)
|
|
|
|
|
|
|
|
|
|
| 364 |
existing_stats_map[key] = (
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
)
|
| 369 |
-
|
| 370 |
-
logging.warning(f"Follower Stats: Data in Bubble is missing one or more required columns for update logic: {stats_required_cols}. Will treat all API stats as new if not matched by key elements.")
|
| 371 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
|
| 373 |
-
|
| 374 |
-
for stat_from_api in api_follower_stats:
|
| 375 |
-
|
|
|
|
| 376 |
api_category_raw = stat_from_api.get(FOLLOWER_STATS_CATEGORY_COLUMN)
|
| 377 |
|
| 378 |
-
api_category_identifier =
|
| 379 |
-
if api_type == 'follower_gains_monthly':
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
logging.warning(f"Could not parse date from API for monthly gain: {api_category_raw}. Skipping this API stat.")
|
| 384 |
-
continue
|
| 385 |
-
except Exception:
|
| 386 |
-
logging.warning(f"Error parsing date from API for monthly gain: {api_category_raw}. Skipping this API stat.")
|
| 387 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
api_type,
|
| 392 |
-
api_category_identifier
|
| 393 |
-
)
|
| 394 |
|
| 395 |
-
#
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
if
|
| 403 |
-
|
| 404 |
stats_for_bulk_upload.append(stat_from_api)
|
| 405 |
else:
|
| 406 |
-
|
| 407 |
-
|
|
|
|
| 408 |
fields_to_update_in_bubble = {}
|
| 409 |
-
|
| 410 |
-
if api_organic_count != existing_organic:
|
| 411 |
fields_to_update_in_bubble[FOLLOWER_STATS_ORGANIC_COLUMN] = api_organic_count
|
|
|
|
| 412 |
|
| 413 |
-
if api_paid_count
|
| 414 |
fields_to_update_in_bubble[FOLLOWER_STATS_PAID_COLUMN] = api_paid_count
|
|
|
|
| 415 |
|
| 416 |
-
if fields_to_update_in_bubble:
|
| 417 |
records_to_update_via_patch.append((bubble_id, fields_to_update_in_bubble))
|
|
|
|
|
|
|
|
|
|
| 418 |
|
| 419 |
-
# --- Perform Bubble Operations ---
|
| 420 |
num_bulk_uploaded = 0
|
| 421 |
if stats_for_bulk_upload:
|
|
|
|
| 422 |
if bulk_upload_to_bubble(stats_for_bulk_upload, BUBBLE_FOLLOWER_STATS_TABLE_NAME):
|
| 423 |
num_bulk_uploaded = len(stats_for_bulk_upload)
|
| 424 |
logging.info(f"Successfully bulk-uploaded {num_bulk_uploaded} new follower stat entries to Bubble for org {org_urn}.")
|
|
@@ -427,15 +448,18 @@ def sync_linkedin_follower_stats(token_state):
|
|
| 427 |
|
| 428 |
num_patched_updated = 0
|
| 429 |
if records_to_update_via_patch:
|
|
|
|
|
|
|
| 430 |
for bubble_id, fields_to_update in records_to_update_via_patch:
|
| 431 |
if update_record_in_bubble(BUBBLE_FOLLOWER_STATS_TABLE_NAME, bubble_id, fields_to_update):
|
| 432 |
num_patched_updated += 1
|
|
|
|
| 433 |
else:
|
| 434 |
logging.error(f"Failed to update record {bubble_id} via PATCH for follower stats for org {org_urn}.")
|
| 435 |
logging.info(f"Attempted to update {len(records_to_update_via_patch)} follower stat entries via PATCH, {num_patched_updated} succeeded for org {org_urn}.")
|
| 436 |
|
| 437 |
if not stats_for_bulk_upload and not records_to_update_via_patch:
|
| 438 |
-
logging.info(f"Follower Stats sync: Data for org {org_urn} is up-to-date or no changes met update criteria.")
|
| 439 |
follower_stats_sync_message = "Follower Stats: Data up-to-date or no qualifying changes. "
|
| 440 |
else:
|
| 441 |
follower_stats_sync_message = f"Follower Stats: Synced (New: {num_bulk_uploaded}, Updated: {num_patched_updated}). "
|
|
@@ -443,85 +467,71 @@ def sync_linkedin_follower_stats(token_state):
|
|
| 443 |
# --- Update token_state's follower stats DataFrame ---
|
| 444 |
current_data_for_state_df = bubble_follower_stats_df_orig.copy()
|
| 445 |
|
| 446 |
-
if
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
if bubble_id_from_df in successful_updates_map:
|
| 455 |
-
fields_updated = successful_updates_map[bubble_id_from_df]
|
| 456 |
-
for col, value in fields_updated.items():
|
| 457 |
-
current_data_for_state_df.loc[index, col] = value
|
| 458 |
|
| 459 |
-
if
|
| 460 |
-
#
|
| 461 |
-
successfully_created_stats = [s for i, s in enumerate(stats_for_bulk_upload) if i < num_bulk_uploaded]
|
| 462 |
if successfully_created_stats:
|
| 463 |
newly_created_df = pd.DataFrame(successfully_created_stats)
|
| 464 |
if not newly_created_df.empty:
|
| 465 |
for col in current_data_for_state_df.columns:
|
| 466 |
if col not in newly_created_df.columns:
|
| 467 |
-
newly_created_df[col] = pd.NA
|
| 468 |
-
# Align columns before concat to avoid issues with differing column orders or types
|
| 469 |
aligned_newly_created_df = newly_created_df.reindex(columns=current_data_for_state_df.columns).fillna(pd.NA)
|
| 470 |
current_data_for_state_df = pd.concat([current_data_for_state_df, aligned_newly_created_df], ignore_index=True)
|
| 471 |
|
| 472 |
if not current_data_for_state_df.empty:
|
| 473 |
-
|
| 474 |
-
# Ensure consistent primary key for deduplication across types
|
| 475 |
-
# For monthly gains, primary key is (org_urn, type='follower_gains_monthly', category=date_str)
|
| 476 |
-
# For demographics, primary key is (org_urn, type, category)
|
| 477 |
-
|
| 478 |
-
# To handle this, we can sort by a hypothetical 'last_modified_indicator' if we had one,
|
| 479 |
-
# or rely on 'keep=last' after ensuring data is ordered such that API data (potentially newer) comes later.
|
| 480 |
-
# The concat order (original, then new) and then drop_duplicates with keep='last' on identifying keys is standard.
|
| 481 |
-
|
| 482 |
-
# We need to define unique keys for each type to drop duplicates correctly.
|
| 483 |
-
# The current deduplication splits by type and then applies different subsets. This should still work.
|
| 484 |
-
|
| 485 |
-
monthly_part = current_data_for_state_df[current_data_for_state_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly']
|
| 486 |
if not monthly_part.empty:
|
| 487 |
-
# Ensure
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
monthly_part = monthly_part_copy.drop_duplicates(
|
| 491 |
subset=[FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN],
|
| 492 |
keep='last'
|
| 493 |
)
|
| 494 |
|
| 495 |
-
demographics_part = current_data_for_state_df[current_data_for_state_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly']
|
| 496 |
if not demographics_part.empty:
|
|
|
|
|
|
|
| 497 |
demo_subset_cols = [FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN]
|
| 498 |
if all(col in demographics_part.columns for col in demo_subset_cols):
|
|
|
|
|
|
|
| 499 |
demographics_part = demographics_part.drop_duplicates(
|
| 500 |
subset=demo_subset_cols,
|
| 501 |
keep='last'
|
| 502 |
)
|
| 503 |
else:
|
| 504 |
-
logging.warning("
|
| 505 |
|
| 506 |
if monthly_part.empty and demographics_part.empty:
|
| 507 |
token_state["bubble_follower_stats_df"] = pd.DataFrame(columns=bubble_follower_stats_df_orig.columns)
|
| 508 |
-
elif monthly_part.empty:
|
| 509 |
token_state["bubble_follower_stats_df"] = demographics_part.reset_index(drop=True) if not demographics_part.empty else pd.DataFrame(columns=bubble_follower_stats_df_orig.columns)
|
| 510 |
-
elif demographics_part.empty:
|
| 511 |
token_state["bubble_follower_stats_df"] = monthly_part.reset_index(drop=True) if not monthly_part.empty else pd.DataFrame(columns=bubble_follower_stats_df_orig.columns)
|
| 512 |
-
else:
|
| 513 |
token_state["bubble_follower_stats_df"] = pd.concat([monthly_part, demographics_part], ignore_index=True)
|
| 514 |
-
else:
|
| 515 |
token_state["bubble_follower_stats_df"] = pd.DataFrame(columns=bubble_follower_stats_df_orig.columns)
|
| 516 |
|
|
|
|
| 517 |
except ValueError as ve:
|
| 518 |
-
logging.error(f"ValueError during follower stats sync for {org_urn}: {ve}", exc_info=True)
|
| 519 |
follower_stats_sync_message = f"Follower Stats Error: {html.escape(str(ve))}. "
|
| 520 |
-
except Exception as e:
|
| 521 |
-
logging.exception(f"Unexpected error in sync_linkedin_follower_stats for {org_urn}.")
|
| 522 |
follower_stats_sync_message = f"Follower Stats: Unexpected error ({type(e).__name__}). "
|
| 523 |
finally:
|
| 524 |
-
if not attempt_logged and org_urn:
|
| 525 |
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state)
|
| 526 |
|
| 527 |
return follower_stats_sync_message, token_state
|
|
|
|
| 268 |
return mentions_sync_message, token_state
|
| 269 |
|
| 270 |
|
| 271 |
+
def _clean_key_component(component_value, is_category_identifier=False):
|
| 272 |
+
"""
|
| 273 |
+
Helper to consistently clean key components.
|
| 274 |
+
For non-date category identifiers, converts to lowercase for case-insensitive matching.
|
| 275 |
+
"""
|
| 276 |
+
if pd.isna(component_value) or component_value is None:
|
| 277 |
+
return "NONE_VALUE" # Consistent placeholder for None/NaN
|
| 278 |
+
|
| 279 |
+
cleaned_value = str(component_value).strip()
|
| 280 |
+
if is_category_identifier: # Apply lowercasing only to general category text, not dates or URNs/Types
|
| 281 |
+
return cleaned_value.lower()
|
| 282 |
+
return cleaned_value
|
| 283 |
+
|
| 284 |
+
|
| 285 |
def sync_linkedin_follower_stats(token_state):
|
| 286 |
"""
|
| 287 |
Fetches new/updated LinkedIn follower statistics and uploads/updates them in Bubble,
|
| 288 |
+
if scheduled by state_manager. Includes detailed logging for debugging key mismatches.
|
|
|
|
|
|
|
| 289 |
"""
|
| 290 |
+
logging.info("DEBUG: Starting LinkedIn follower stats sync process check.")
|
| 291 |
|
| 292 |
if not token_state.get("fs_should_sync_now", False):
|
| 293 |
+
logging.info("DEBUG: Follower Stats sync: Not scheduled by state_manager. Skipping.")
|
| 294 |
return "Follower Stats: Sync not currently required by schedule. ", token_state
|
| 295 |
|
| 296 |
+
logging.info("DEBUG: Follower Stats sync: Proceeding as scheduled by state_manager.")
|
| 297 |
|
| 298 |
if not token_state or not token_state.get("token"):
|
| 299 |
+
logging.error("DEBUG: Follower Stats sync: Access denied. No LinkedIn token.")
|
| 300 |
org_urn_for_log = token_state.get('org_urn') if token_state else None
|
| 301 |
if org_urn_for_log:
|
| 302 |
token_state = _log_sync_attempt(org_urn_for_log, LOG_SUBJECT_FOLLOWER_STATS, token_state)
|
|
|
|
| 311 |
attempt_logged = False
|
| 312 |
|
| 313 |
if not org_urn or not client_id or client_id == "ENV VAR MISSING":
|
| 314 |
+
logging.error("DEBUG: Follower Stats sync: Configuration error (Org URN or Client ID missing).")
|
| 315 |
if org_urn:
|
| 316 |
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state)
|
| 317 |
attempt_logged = True
|
| 318 |
return "Follower Stats: Config error. ", token_state
|
| 319 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
if not bubble_follower_stats_df_orig.empty and BUBBLE_UNIQUE_ID_COLUMN_NAME not in bubble_follower_stats_df_orig.columns:
|
| 321 |
+
logging.error(f"DEBUG: Follower Stats sync: Critical error - '{BUBBLE_UNIQUE_ID_COLUMN_NAME}' column missing in bubble_follower_stats_df. Cannot proceed with updates.")
|
| 322 |
if org_urn:
|
| 323 |
+
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state)
|
| 324 |
attempt_logged = True
|
| 325 |
return f"Follower Stats: Config error ({BUBBLE_UNIQUE_ID_COLUMN_NAME} missing). ", token_state
|
| 326 |
|
| 327 |
+
logging.info(f"DEBUG: Follower stats sync proceeding for org_urn: {org_urn}")
|
| 328 |
try:
|
| 329 |
api_follower_stats = get_linkedin_follower_stats(client_id, token_dict, org_urn)
|
| 330 |
|
| 331 |
+
if not api_follower_stats: # This is a list of dicts
|
| 332 |
+
logging.info(f"DEBUG: Follower Stats sync: No stats found via API for org {org_urn}. API returned: {api_follower_stats}")
|
| 333 |
follower_stats_sync_message = "Follower Stats: None found via API. "
|
| 334 |
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state)
|
| 335 |
attempt_logged = True
|
| 336 |
return follower_stats_sync_message, token_state
|
| 337 |
|
| 338 |
stats_for_bulk_upload = []
|
| 339 |
+
records_to_update_via_patch = []
|
| 340 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
existing_stats_map = {}
|
| 342 |
stats_required_cols = [
|
| 343 |
FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN,
|
| 344 |
+
FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN,
|
| 345 |
+
FOLLOWER_STATS_PAID_COLUMN, BUBBLE_UNIQUE_ID_COLUMN_NAME
|
|
|
|
| 346 |
]
|
| 347 |
|
| 348 |
+
logging.info("DEBUG: Populating existing_stats_map from Bubble data...")
|
| 349 |
if not bubble_follower_stats_df_orig.empty and all(col in bubble_follower_stats_df_orig.columns for col in stats_required_cols):
|
| 350 |
+
for index, row in bubble_follower_stats_df_orig.iterrows():
|
| 351 |
+
org_urn_val = _clean_key_component(row[FOLLOWER_STATS_ORG_URN_COLUMN])
|
| 352 |
+
type_val = _clean_key_component(row[FOLLOWER_STATS_TYPE_COLUMN])
|
| 353 |
+
category_raw_val = row[FOLLOWER_STATS_CATEGORY_COLUMN]
|
| 354 |
+
bubble_id_val = row.get(BUBBLE_UNIQUE_ID_COLUMN_NAME)
|
| 355 |
+
|
| 356 |
+
if pd.isna(bubble_id_val):
|
| 357 |
+
logging.warning(f"DEBUG: Row index {index} from Bubble data has missing Bubble ID ('{BUBBLE_UNIQUE_ID_COLUMN_NAME}'). Cannot use for updates. Data: {row.to_dict()}")
|
| 358 |
+
continue
|
| 359 |
+
|
| 360 |
+
category_identifier = ""
|
| 361 |
+
if type_val == 'follower_gains_monthly': # Type is already cleaned
|
| 362 |
+
parsed_date = pd.to_datetime(category_raw_val, errors='coerce')
|
| 363 |
+
if pd.NaT is parsed_date or pd.isna(parsed_date):
|
| 364 |
+
logging.warning(f"DEBUG: Could not parse date for existing monthly gain: '{category_raw_val}' from Bubble row index {index}. Skipping for map.")
|
| 365 |
continue
|
| 366 |
+
category_identifier = parsed_date.strftime('%Y-%m-%d') # Date format, not lowercased
|
| 367 |
+
else:
|
| 368 |
+
# Apply lowercasing for general text categories for case-insensitive matching
|
| 369 |
+
category_identifier = _clean_key_component(category_raw_val, is_category_identifier=True)
|
| 370 |
|
| 371 |
+
key = (org_urn_val, type_val, category_identifier)
|
| 372 |
+
|
| 373 |
+
# Ensure counts are numeric when storing in map
|
| 374 |
+
existing_organic_count = pd.to_numeric(row[FOLLOWER_STATS_ORGANIC_COLUMN], errors='coerce')
|
| 375 |
+
existing_paid_count = pd.to_numeric(row[FOLLOWER_STATS_PAID_COLUMN], errors='coerce')
|
| 376 |
+
existing_organic_count = 0 if pd.isna(existing_organic_count) else int(existing_organic_count)
|
| 377 |
+
existing_paid_count = 0 if pd.isna(existing_paid_count) else int(existing_paid_count)
|
| 378 |
+
|
| 379 |
existing_stats_map[key] = (
|
| 380 |
+
existing_organic_count,
|
| 381 |
+
existing_paid_count,
|
| 382 |
+
str(bubble_id_val) # Ensure Bubble ID is string
|
| 383 |
)
|
| 384 |
+
logging.debug(f"DEBUG: Added to existing_stats_map: Key={key}, BubbleID={str(bubble_id_val)}, OrgCounts={existing_organic_count}, PaidCounts={existing_paid_count}")
|
|
|
|
| 385 |
|
| 386 |
+
elif not bubble_follower_stats_df_orig.empty:
|
| 387 |
+
logging.warning(f"DEBUG: Follower Stats: Bubble data is missing one or more required columns for map: {stats_required_cols}.")
|
| 388 |
+
else:
|
| 389 |
+
logging.info("DEBUG: Follower Stats: Bubble_follower_stats_df_orig is empty. existing_stats_map will be empty.")
|
| 390 |
|
| 391 |
+
logging.info(f"DEBUG: Processing {len(api_follower_stats)} stats from API...")
|
| 392 |
+
for i, stat_from_api in enumerate(api_follower_stats): # api_follower_stats is a list of dicts
|
| 393 |
+
api_org_urn = _clean_key_component(stat_from_api.get(FOLLOWER_STATS_ORG_URN_COLUMN))
|
| 394 |
+
api_type = _clean_key_component(stat_from_api.get(FOLLOWER_STATS_TYPE_COLUMN))
|
| 395 |
api_category_raw = stat_from_api.get(FOLLOWER_STATS_CATEGORY_COLUMN)
|
| 396 |
|
| 397 |
+
api_category_identifier = ""
|
| 398 |
+
if api_type == 'follower_gains_monthly': # API type is already cleaned
|
| 399 |
+
parsed_date = pd.to_datetime(api_category_raw, errors='coerce')
|
| 400 |
+
if pd.NaT is parsed_date or pd.isna(parsed_date):
|
| 401 |
+
logging.warning(f"DEBUG: API stat index {i}: Could not parse date for API monthly gain: '{api_category_raw}'. Skipping.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
continue
|
| 403 |
+
api_category_identifier = parsed_date.strftime('%Y-%m-%d') # Date format, not lowercased
|
| 404 |
+
else:
|
| 405 |
+
# Apply lowercasing for general text categories for case-insensitive matching
|
| 406 |
+
api_category_identifier = _clean_key_component(api_category_raw, is_category_identifier=True)
|
| 407 |
|
| 408 |
+
key_from_api = (api_org_urn, api_type, api_category_identifier)
|
| 409 |
+
logging.debug(f"DEBUG: API stat index {i}: Generated Key={key_from_api}, RawData={stat_from_api}")
|
|
|
|
|
|
|
|
|
|
| 410 |
|
| 411 |
+
# Ensure API counts are numeric
|
| 412 |
+
api_organic_count = pd.to_numeric(stat_from_api.get(FOLLOWER_STATS_ORGANIC_COLUMN), errors='coerce')
|
| 413 |
+
api_paid_count = pd.to_numeric(stat_from_api.get(FOLLOWER_STATS_PAID_COLUMN), errors='coerce')
|
| 414 |
+
api_organic_count = 0 if pd.isna(api_organic_count) else int(api_organic_count)
|
| 415 |
+
api_paid_count = 0 if pd.isna(api_paid_count) else int(api_paid_count)
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
if key_from_api not in existing_stats_map:
|
| 419 |
+
logging.info(f"DEBUG: API stat index {i}: Key={key_from_api} NOT FOUND in existing_stats_map. Adding for BULK UPLOAD.")
|
| 420 |
stats_for_bulk_upload.append(stat_from_api)
|
| 421 |
else:
|
| 422 |
+
existing_organic, existing_paid, bubble_id = existing_stats_map[key_from_api] # Counts are already int from map
|
| 423 |
+
logging.info(f"DEBUG: API stat index {i}: Key={key_from_api} FOUND in existing_stats_map. BubbleID={bubble_id}. ExistingCounts(O/P): {existing_organic}/{existing_paid}. APICounts(O/P): {api_organic_count}/{api_paid_count}.")
|
| 424 |
+
|
| 425 |
fields_to_update_in_bubble = {}
|
| 426 |
+
if api_organic_count > existing_organic:
|
|
|
|
| 427 |
fields_to_update_in_bubble[FOLLOWER_STATS_ORGANIC_COLUMN] = api_organic_count
|
| 428 |
+
logging.debug(f"DEBUG: API stat index {i}: Organic count update: API({api_organic_count}) > Bubble({existing_organic}) for BubbleID {bubble_id}")
|
| 429 |
|
| 430 |
+
if api_paid_count > existing_paid:
|
| 431 |
fields_to_update_in_bubble[FOLLOWER_STATS_PAID_COLUMN] = api_paid_count
|
| 432 |
+
logging.debug(f"DEBUG: API stat index {i}: Paid count update: API({api_paid_count}) > Bubble({existing_paid}) for BubbleID {bubble_id}")
|
| 433 |
|
| 434 |
+
if fields_to_update_in_bubble:
|
| 435 |
records_to_update_via_patch.append((bubble_id, fields_to_update_in_bubble))
|
| 436 |
+
logging.info(f"DEBUG: API stat index {i}: Queued for PATCH update. BubbleID={bubble_id}, Updates={fields_to_update_in_bubble}")
|
| 437 |
+
else:
|
| 438 |
+
logging.info(f"DEBUG: API stat index {i}: Counts are not greater or equal. No update needed for BubbleID={bubble_id}.")
|
| 439 |
|
|
|
|
| 440 |
num_bulk_uploaded = 0
|
| 441 |
if stats_for_bulk_upload:
|
| 442 |
+
logging.info(f"DEBUG: Attempting to bulk upload {len(stats_for_bulk_upload)} new follower stat entries.")
|
| 443 |
if bulk_upload_to_bubble(stats_for_bulk_upload, BUBBLE_FOLLOWER_STATS_TABLE_NAME):
|
| 444 |
num_bulk_uploaded = len(stats_for_bulk_upload)
|
| 445 |
logging.info(f"Successfully bulk-uploaded {num_bulk_uploaded} new follower stat entries to Bubble for org {org_urn}.")
|
|
|
|
| 448 |
|
| 449 |
num_patched_updated = 0
|
| 450 |
if records_to_update_via_patch:
|
| 451 |
+
logging.info(f"DEBUG: Attempting to PATCH update {len(records_to_update_via_patch)} follower stat entries.")
|
| 452 |
+
successfully_patched_ids_and_data_temp = [] # To store what was actually successful for token_state update
|
| 453 |
for bubble_id, fields_to_update in records_to_update_via_patch:
|
| 454 |
if update_record_in_bubble(BUBBLE_FOLLOWER_STATS_TABLE_NAME, bubble_id, fields_to_update):
|
| 455 |
num_patched_updated += 1
|
| 456 |
+
successfully_patched_ids_and_data_temp.append({'bubble_id': bubble_id, 'fields': fields_to_update})
|
| 457 |
else:
|
| 458 |
logging.error(f"Failed to update record {bubble_id} via PATCH for follower stats for org {org_urn}.")
|
| 459 |
logging.info(f"Attempted to update {len(records_to_update_via_patch)} follower stat entries via PATCH, {num_patched_updated} succeeded for org {org_urn}.")
|
| 460 |
|
| 461 |
if not stats_for_bulk_upload and not records_to_update_via_patch:
|
| 462 |
+
logging.info(f"DEBUG: Follower Stats sync: Data for org {org_urn} is up-to-date or no changes met update criteria.")
|
| 463 |
follower_stats_sync_message = "Follower Stats: Data up-to-date or no qualifying changes. "
|
| 464 |
else:
|
| 465 |
follower_stats_sync_message = f"Follower Stats: Synced (New: {num_bulk_uploaded}, Updated: {num_patched_updated}). "
|
|
|
|
| 467 |
# --- Update token_state's follower stats DataFrame ---
|
| 468 |
current_data_for_state_df = bubble_follower_stats_df_orig.copy()
|
| 469 |
|
| 470 |
+
if num_patched_updated > 0: # Check against actual successful patches
|
| 471 |
+
for item in successfully_patched_ids_and_data_temp: # Iterate over successfully patched items
|
| 472 |
+
bubble_id = item['bubble_id']
|
| 473 |
+
fields_updated = item['fields']
|
| 474 |
+
idx = current_data_for_state_df[current_data_for_state_df[BUBBLE_UNIQUE_ID_COLUMN_NAME] == bubble_id].index
|
| 475 |
+
if not idx.empty:
|
| 476 |
+
for col, value in fields_updated.items():
|
| 477 |
+
current_data_for_state_df.loc[idx, col] = value
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
|
| 479 |
+
if num_bulk_uploaded > 0: # Check against actual successful bulk uploads
|
| 480 |
+
successfully_created_stats = stats_for_bulk_upload[:num_bulk_uploaded] # Slice based on success count
|
|
|
|
| 481 |
if successfully_created_stats:
|
| 482 |
newly_created_df = pd.DataFrame(successfully_created_stats)
|
| 483 |
if not newly_created_df.empty:
|
| 484 |
for col in current_data_for_state_df.columns:
|
| 485 |
if col not in newly_created_df.columns:
|
| 486 |
+
newly_created_df[col] = pd.NA
|
|
|
|
| 487 |
aligned_newly_created_df = newly_created_df.reindex(columns=current_data_for_state_df.columns).fillna(pd.NA)
|
| 488 |
current_data_for_state_df = pd.concat([current_data_for_state_df, aligned_newly_created_df], ignore_index=True)
|
| 489 |
|
| 490 |
if not current_data_for_state_df.empty:
|
| 491 |
+
monthly_part = current_data_for_state_df[current_data_for_state_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 492 |
if not monthly_part.empty:
|
| 493 |
+
# Ensure FOLLOWER_STATS_CATEGORY_COLUMN is string before strftime, after to_datetime
|
| 494 |
+
monthly_part.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = pd.to_datetime(monthly_part[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce').dt.strftime('%Y-%m-%d')
|
| 495 |
+
monthly_part = monthly_part.drop_duplicates(
|
|
|
|
| 496 |
subset=[FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN],
|
| 497 |
keep='last'
|
| 498 |
)
|
| 499 |
|
| 500 |
+
demographics_part = current_data_for_state_df[current_data_for_state_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'].copy()
|
| 501 |
if not demographics_part.empty:
|
| 502 |
+
# For demographics, category is already cleaned (and lowercased) if it was text
|
| 503 |
+
# Ensure all subset columns exist before drop_duplicates
|
| 504 |
demo_subset_cols = [FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN]
|
| 505 |
if all(col in demographics_part.columns for col in demo_subset_cols):
|
| 506 |
+
# Clean the category column here again to match the key generation for demographics
|
| 507 |
+
demographics_part.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = demographics_part[FOLLOWER_STATS_CATEGORY_COLUMN].apply(lambda x: _clean_key_component(x, is_category_identifier=True))
|
| 508 |
demographics_part = demographics_part.drop_duplicates(
|
| 509 |
subset=demo_subset_cols,
|
| 510 |
keep='last'
|
| 511 |
)
|
| 512 |
else:
|
| 513 |
+
logging.warning(f"DEBUG: Demographics part missing one of {demo_subset_cols} for deduplication.")
|
| 514 |
|
| 515 |
if monthly_part.empty and demographics_part.empty:
|
| 516 |
token_state["bubble_follower_stats_df"] = pd.DataFrame(columns=bubble_follower_stats_df_orig.columns)
|
| 517 |
+
elif monthly_part.empty: # only demographics_part has data or is empty
|
| 518 |
token_state["bubble_follower_stats_df"] = demographics_part.reset_index(drop=True) if not demographics_part.empty else pd.DataFrame(columns=bubble_follower_stats_df_orig.columns)
|
| 519 |
+
elif demographics_part.empty: # only monthly_part has data or is empty
|
| 520 |
token_state["bubble_follower_stats_df"] = monthly_part.reset_index(drop=True) if not monthly_part.empty else pd.DataFrame(columns=bubble_follower_stats_df_orig.columns)
|
| 521 |
+
else: # both have data
|
| 522 |
token_state["bubble_follower_stats_df"] = pd.concat([monthly_part, demographics_part], ignore_index=True)
|
| 523 |
+
else: # if current_data_for_state_df ended up empty
|
| 524 |
token_state["bubble_follower_stats_df"] = pd.DataFrame(columns=bubble_follower_stats_df_orig.columns)
|
| 525 |
|
| 526 |
+
|
| 527 |
except ValueError as ve:
|
| 528 |
+
logging.error(f"DEBUG: ValueError during follower stats sync for {org_urn}: {ve}", exc_info=True)
|
| 529 |
follower_stats_sync_message = f"Follower Stats Error: {html.escape(str(ve))}. "
|
| 530 |
+
except Exception as e: # Catch any other unexpected error
|
| 531 |
+
logging.exception(f"DEBUG: Unexpected error in sync_linkedin_follower_stats for {org_urn}.") # .exception logs stack trace
|
| 532 |
follower_stats_sync_message = f"Follower Stats: Unexpected error ({type(e).__name__}). "
|
| 533 |
finally:
|
| 534 |
+
if not attempt_logged and org_urn: # Ensure log attempt happens if not already logged due to early exit
|
| 535 |
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state)
|
| 536 |
|
| 537 |
return follower_stats_sync_message, token_state
|