Spaces:
Running
Running
Create state_manager.py
Browse files- state_manager.py +222 -0
state_manager.py
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# state_manager.py
|
| 2 |
+
"""
|
| 3 |
+
Manages the application state, including token processing,
|
| 4 |
+
initial data loading from Bubble, and determining sync requirements.
|
| 5 |
+
"""
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import logging
|
| 8 |
+
import os
|
| 9 |
+
from datetime import datetime, timedelta, timezone # Added timezone to ensure it's available
|
| 10 |
+
import gradio as gr
|
| 11 |
+
|
| 12 |
+
# Assuming Bubble_API_Calls contains fetch_linkedin_token_from_bubble and fetch_linkedin_posts_data_from_bubble
|
| 13 |
+
from Bubble_API_Calls import (
|
| 14 |
+
fetch_linkedin_token_from_bubble,
|
| 15 |
+
fetch_linkedin_posts_data_from_bubble
|
| 16 |
+
)
|
| 17 |
+
# Assuming config.py contains all necessary constants
|
| 18 |
+
from config import (
|
| 19 |
+
DEFAULT_INITIAL_FETCH_COUNT, BUBBLE_POST_DATE_COLUMN_NAME, BUBBLE_POSTS_TABLE_NAME,
|
| 20 |
+
BUBBLE_MENTIONS_TABLE_NAME, BUBBLE_MENTIONS_DATE_COLUMN_NAME,
|
| 21 |
+
BUBBLE_FOLLOWER_STATS_TABLE_NAME, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN,
|
| 22 |
+
LINKEDIN_CLIENT_ID_ENV_VAR
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
def check_token_status(token_state):
|
| 26 |
+
"""Checks the status of the LinkedIn token."""
|
| 27 |
+
return "β
Token available" if token_state and token_state.get("token") else "β Token not available"
|
| 28 |
+
|
| 29 |
+
def process_and_store_bubble_token(url_user_token, org_urn, token_state):
|
| 30 |
+
"""
|
| 31 |
+
Processes user token, fetches LinkedIn token, fetches existing Bubble data (posts, mentions, follower stats),
|
| 32 |
+
and determines if an initial fetch or update is needed for each data type.
|
| 33 |
+
Updates token state and UI for the sync button.
|
| 34 |
+
"""
|
| 35 |
+
logging.info(f"Processing token with URL user token: '{url_user_token}', Org URN: '{org_urn}'")
|
| 36 |
+
|
| 37 |
+
# Initialize or update state safely
|
| 38 |
+
new_state = token_state.copy() if token_state else {
|
| 39 |
+
"token": None, "client_id": None, "org_urn": None,
|
| 40 |
+
"bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0,
|
| 41 |
+
"bubble_mentions_df": pd.DataFrame(),
|
| 42 |
+
"bubble_follower_stats_df": pd.DataFrame(),
|
| 43 |
+
"url_user_token_temp_storage": None
|
| 44 |
+
}
|
| 45 |
+
new_state.update({
|
| 46 |
+
"org_urn": org_urn,
|
| 47 |
+
"bubble_posts_df": new_state.get("bubble_posts_df", pd.DataFrame()),
|
| 48 |
+
"fetch_count_for_api": new_state.get("fetch_count_for_api", 0),
|
| 49 |
+
"bubble_mentions_df": new_state.get("bubble_mentions_df", pd.DataFrame()),
|
| 50 |
+
"bubble_follower_stats_df": new_state.get("bubble_follower_stats_df", pd.DataFrame()),
|
| 51 |
+
"url_user_token_temp_storage": url_user_token
|
| 52 |
+
})
|
| 53 |
+
|
| 54 |
+
button_update = gr.update(visible=False, interactive=False, value="π Sync LinkedIn Data") # Default to hidden
|
| 55 |
+
|
| 56 |
+
client_id = os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR)
|
| 57 |
+
new_state["client_id"] = client_id if client_id else "ENV VAR MISSING"
|
| 58 |
+
if not client_id: logging.error(f"CRITICAL ERROR: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set.")
|
| 59 |
+
|
| 60 |
+
# Fetch LinkedIn Token from Bubble
|
| 61 |
+
if url_user_token and "not found" not in url_user_token and "Could not access" not in url_user_token:
|
| 62 |
+
logging.info(f"Attempting to fetch LinkedIn token from Bubble with user token: {url_user_token}")
|
| 63 |
+
try:
|
| 64 |
+
parsed_linkedin_token = fetch_linkedin_token_from_bubble(url_user_token)
|
| 65 |
+
if isinstance(parsed_linkedin_token, dict) and "access_token" in parsed_linkedin_token:
|
| 66 |
+
new_state["token"] = parsed_linkedin_token
|
| 67 |
+
logging.info("β
LinkedIn Token successfully fetched from Bubble.")
|
| 68 |
+
else:
|
| 69 |
+
new_state["token"] = None
|
| 70 |
+
logging.warning(f"β Failed to fetch a valid LinkedIn token from Bubble. Response: {parsed_linkedin_token}")
|
| 71 |
+
except Exception as e:
|
| 72 |
+
new_state["token"] = None
|
| 73 |
+
logging.error(f"β Exception while fetching LinkedIn token from Bubble: {e}", exc_info=True)
|
| 74 |
+
else:
|
| 75 |
+
new_state["token"] = None
|
| 76 |
+
logging.info("No valid URL user token provided for LinkedIn token fetch, or an error was indicated.")
|
| 77 |
+
|
| 78 |
+
# Fetch existing data from Bubble if Org URN is available
|
| 79 |
+
current_org_urn = new_state.get("org_urn")
|
| 80 |
+
if current_org_urn:
|
| 81 |
+
# Fetch Posts from Bubble
|
| 82 |
+
logging.info(f"Attempting to fetch posts from Bubble for org_urn: {current_org_urn}")
|
| 83 |
+
try:
|
| 84 |
+
fetched_posts_df, error_message_posts = fetch_linkedin_posts_data_from_bubble(current_org_urn, BUBBLE_POSTS_TABLE_NAME)
|
| 85 |
+
new_state["bubble_posts_df"] = pd.DataFrame() if error_message_posts or fetched_posts_df is None else fetched_posts_df
|
| 86 |
+
if error_message_posts: logging.warning(f"Error fetching {BUBBLE_POSTS_TABLE_NAME} from Bubble: {error_message_posts}.")
|
| 87 |
+
except Exception as e:
|
| 88 |
+
logging.error(f"β Error fetching posts from Bubble: {e}.", exc_info=True)
|
| 89 |
+
new_state["bubble_posts_df"] = pd.DataFrame()
|
| 90 |
+
|
| 91 |
+
# Fetch Mentions from Bubble
|
| 92 |
+
logging.info(f"Attempting to fetch mentions from Bubble for org_urn: {current_org_urn}")
|
| 93 |
+
try:
|
| 94 |
+
fetched_mentions_df, error_message_mentions = fetch_linkedin_posts_data_from_bubble(current_org_urn, BUBBLE_MENTIONS_TABLE_NAME)
|
| 95 |
+
new_state["bubble_mentions_df"] = pd.DataFrame() if error_message_mentions or fetched_mentions_df is None else fetched_mentions_df
|
| 96 |
+
if error_message_mentions: logging.warning(f"Error fetching {BUBBLE_MENTIONS_TABLE_NAME} from Bubble: {error_message_mentions}.")
|
| 97 |
+
except Exception as e:
|
| 98 |
+
logging.error(f"β Error fetching mentions from Bubble: {e}.", exc_info=True)
|
| 99 |
+
new_state["bubble_mentions_df"] = pd.DataFrame()
|
| 100 |
+
|
| 101 |
+
# Fetch Follower Stats from Bubble
|
| 102 |
+
logging.info(f"Attempting to fetch follower stats from Bubble for org_urn: {current_org_urn}")
|
| 103 |
+
try:
|
| 104 |
+
fetched_follower_stats_df, error_message_fs = fetch_linkedin_posts_data_from_bubble(current_org_urn, BUBBLE_FOLLOWER_STATS_TABLE_NAME)
|
| 105 |
+
new_state["bubble_follower_stats_df"] = pd.DataFrame() if error_message_fs or fetched_follower_stats_df is None else fetched_follower_stats_df
|
| 106 |
+
if error_message_fs: logging.warning(f"Error fetching {BUBBLE_FOLLOWER_STATS_TABLE_NAME} from Bubble: {error_message_fs}.")
|
| 107 |
+
except Exception as e:
|
| 108 |
+
logging.error(f"β Error fetching follower stats from Bubble: {e}.", exc_info=True)
|
| 109 |
+
new_state["bubble_follower_stats_df"] = pd.DataFrame()
|
| 110 |
+
else:
|
| 111 |
+
logging.warning("Org URN not available in state. Cannot fetch data from Bubble.")
|
| 112 |
+
new_state["bubble_posts_df"] = pd.DataFrame()
|
| 113 |
+
new_state["bubble_mentions_df"] = pd.DataFrame()
|
| 114 |
+
new_state["bubble_follower_stats_df"] = pd.DataFrame()
|
| 115 |
+
|
| 116 |
+
# Determine fetch count for Posts API
|
| 117 |
+
if new_state["bubble_posts_df"].empty:
|
| 118 |
+
logging.info(f"βΉοΈ No posts in Bubble. Setting to fetch initial {DEFAULT_INITIAL_FETCH_COUNT} posts.")
|
| 119 |
+
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
| 120 |
+
else:
|
| 121 |
+
try:
|
| 122 |
+
df_posts_check = new_state["bubble_posts_df"].copy()
|
| 123 |
+
if BUBBLE_POST_DATE_COLUMN_NAME not in df_posts_check.columns or df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME].isnull().all():
|
| 124 |
+
logging.warning(f"Date column '{BUBBLE_POST_DATE_COLUMN_NAME}' for posts missing or all null values. Triggering initial fetch.")
|
| 125 |
+
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
| 126 |
+
else:
|
| 127 |
+
df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME] = pd.to_datetime(df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME], errors='coerce', utc=True)
|
| 128 |
+
last_post_date_utc = df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME].dropna().max()
|
| 129 |
+
if pd.isna(last_post_date_utc):
|
| 130 |
+
logging.warning("No valid post dates found after conversion. Triggering initial fetch.")
|
| 131 |
+
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
| 132 |
+
else:
|
| 133 |
+
days_diff = (pd.Timestamp('now', tz='UTC').normalize() - last_post_date_utc.normalize()).days
|
| 134 |
+
if days_diff >= 7:
|
| 135 |
+
new_state['fetch_count_for_api'] = max(1, days_diff // 7) * 10
|
| 136 |
+
logging.info(f"Posts data is {days_diff} days old. Setting fetch count to {new_state['fetch_count_for_api']}.")
|
| 137 |
+
else:
|
| 138 |
+
new_state['fetch_count_for_api'] = 0
|
| 139 |
+
logging.info("Posts data is recent. No new posts fetch needed based on date.")
|
| 140 |
+
except Exception as e:
|
| 141 |
+
logging.error(f"Error processing post dates: {e}. Defaulting to initial fetch for posts.", exc_info=True)
|
| 142 |
+
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
| 143 |
+
|
| 144 |
+
# Determine if Mentions need sync
|
| 145 |
+
mentions_need_sync = False
|
| 146 |
+
if new_state["bubble_mentions_df"].empty:
|
| 147 |
+
mentions_need_sync = True
|
| 148 |
+
logging.info("Mentions need sync: Bubble mentions DF is empty.")
|
| 149 |
+
else:
|
| 150 |
+
if BUBBLE_MENTIONS_DATE_COLUMN_NAME not in new_state["bubble_mentions_df"].columns or \
|
| 151 |
+
new_state["bubble_mentions_df"][BUBBLE_MENTIONS_DATE_COLUMN_NAME].isnull().all():
|
| 152 |
+
mentions_need_sync = True
|
| 153 |
+
logging.info(f"Mentions need sync: Date column '{BUBBLE_MENTIONS_DATE_COLUMN_NAME}' missing or all null values.")
|
| 154 |
+
else:
|
| 155 |
+
df_mentions_check = new_state["bubble_mentions_df"].copy()
|
| 156 |
+
df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce', utc=True)
|
| 157 |
+
last_mention_date_utc = df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dropna().max()
|
| 158 |
+
if pd.isna(last_mention_date_utc) or \
|
| 159 |
+
(pd.Timestamp('now', tz='UTC').normalize() - last_mention_date_utc.normalize()).days >= 7:
|
| 160 |
+
mentions_need_sync = True
|
| 161 |
+
logging.info(f"Mentions need sync: Last mention date {last_mention_date_utc} is old or invalid.")
|
| 162 |
+
else:
|
| 163 |
+
logging.info(f"Mentions up-to-date. Last mention: {last_mention_date_utc}")
|
| 164 |
+
|
| 165 |
+
# Determine if Follower Stats need sync
|
| 166 |
+
follower_stats_need_sync = False
|
| 167 |
+
fs_df = new_state.get("bubble_follower_stats_df", pd.DataFrame())
|
| 168 |
+
if fs_df.empty:
|
| 169 |
+
follower_stats_need_sync = True
|
| 170 |
+
logging.info("Follower stats need sync: Bubble follower stats DF is empty.")
|
| 171 |
+
else:
|
| 172 |
+
monthly_gains_df = fs_df[fs_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].copy()
|
| 173 |
+
if monthly_gains_df.empty:
|
| 174 |
+
follower_stats_need_sync = True
|
| 175 |
+
logging.info("Follower stats need sync: No monthly gains data in Bubble.")
|
| 176 |
+
elif FOLLOWER_STATS_CATEGORY_COLUMN not in monthly_gains_df.columns:
|
| 177 |
+
follower_stats_need_sync = True
|
| 178 |
+
logging.info(f"Follower stats need sync: Date column '{FOLLOWER_STATS_CATEGORY_COLUMN}' missing in monthly gains.")
|
| 179 |
+
else:
|
| 180 |
+
monthly_gains_df.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = pd.to_datetime(monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce').dt.normalize()
|
| 181 |
+
last_gain_date = monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN].dropna().max()
|
| 182 |
+
if pd.isna(last_gain_date):
|
| 183 |
+
follower_stats_need_sync = True
|
| 184 |
+
logging.info("Follower stats need sync: No valid dates in monthly gains after conversion.")
|
| 185 |
+
else:
|
| 186 |
+
if last_gain_date.tzinfo is None or last_gain_date.tzinfo.utcoffset(last_gain_date) is None:
|
| 187 |
+
last_gain_date = last_gain_date.tz_localize('UTC') # Localize naive to UTC
|
| 188 |
+
else:
|
| 189 |
+
last_gain_date = last_gain_date.tz_convert('UTC') # Convert aware to UTC
|
| 190 |
+
|
| 191 |
+
start_of_current_month = pd.Timestamp('now', tz='UTC').normalize().replace(day=1)
|
| 192 |
+
if last_gain_date < start_of_current_month:
|
| 193 |
+
follower_stats_need_sync = True
|
| 194 |
+
logging.info(f"Follower stats need sync: Last gain date {last_gain_date} is before current month start {start_of_current_month}.")
|
| 195 |
+
else:
|
| 196 |
+
logging.info(f"Follower monthly gains up-to-date. Last gain recorded on: {last_gain_date}")
|
| 197 |
+
|
| 198 |
+
if fs_df[fs_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'].empty:
|
| 199 |
+
follower_stats_need_sync = True
|
| 200 |
+
logging.info("Follower stats need sync: Demographic data (non-monthly types) missing.")
|
| 201 |
+
|
| 202 |
+
# Update Sync Button based on token and needed actions
|
| 203 |
+
sync_actions = []
|
| 204 |
+
if new_state['fetch_count_for_api'] > 0:
|
| 205 |
+
sync_actions.append(f"{new_state['fetch_count_for_api']} Posts")
|
| 206 |
+
if mentions_need_sync: # This flag is set based on data freshness
|
| 207 |
+
sync_actions.append("Mentions")
|
| 208 |
+
if follower_stats_need_sync: # This flag is set based on data freshness
|
| 209 |
+
sync_actions.append("Follower Stats")
|
| 210 |
+
|
| 211 |
+
if new_state["token"] and sync_actions:
|
| 212 |
+
button_label = f"π Sync LinkedIn Data ({', '.join(sync_actions)})"
|
| 213 |
+
button_update = gr.update(value=button_label, visible=True, interactive=True)
|
| 214 |
+
elif new_state["token"]:
|
| 215 |
+
button_label = "β
Data Up-to-Date"
|
| 216 |
+
button_update = gr.update(value=button_label, visible=True, interactive=False)
|
| 217 |
+
else:
|
| 218 |
+
button_update = gr.update(visible=False, interactive=False)
|
| 219 |
+
|
| 220 |
+
token_status_message = check_token_status(new_state)
|
| 221 |
+
logging.info(f"Token processing complete. Status: {token_status_message}. Button: {button_update}. Sync actions: {sync_actions}")
|
| 222 |
+
return token_status_message, new_state, button_update
|