Spaces:
Running
Running
Create state_manager.py
Browse files- state_manager.py +222 -0
state_manager.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# state_manager.py
|
2 |
+
"""
|
3 |
+
Manages the application state, including token processing,
|
4 |
+
initial data loading from Bubble, and determining sync requirements.
|
5 |
+
"""
|
6 |
+
import pandas as pd
|
7 |
+
import logging
|
8 |
+
import os
|
9 |
+
from datetime import datetime, timedelta, timezone # Added timezone to ensure it's available
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
# Assuming Bubble_API_Calls contains fetch_linkedin_token_from_bubble and fetch_linkedin_posts_data_from_bubble
|
13 |
+
from Bubble_API_Calls import (
|
14 |
+
fetch_linkedin_token_from_bubble,
|
15 |
+
fetch_linkedin_posts_data_from_bubble
|
16 |
+
)
|
17 |
+
# Assuming config.py contains all necessary constants
|
18 |
+
from config import (
|
19 |
+
DEFAULT_INITIAL_FETCH_COUNT, BUBBLE_POST_DATE_COLUMN_NAME, BUBBLE_POSTS_TABLE_NAME,
|
20 |
+
BUBBLE_MENTIONS_TABLE_NAME, BUBBLE_MENTIONS_DATE_COLUMN_NAME,
|
21 |
+
BUBBLE_FOLLOWER_STATS_TABLE_NAME, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN,
|
22 |
+
LINKEDIN_CLIENT_ID_ENV_VAR
|
23 |
+
)
|
24 |
+
|
25 |
+
def check_token_status(token_state):
|
26 |
+
"""Checks the status of the LinkedIn token."""
|
27 |
+
return "β
Token available" if token_state and token_state.get("token") else "β Token not available"
|
28 |
+
|
29 |
+
def process_and_store_bubble_token(url_user_token, org_urn, token_state):
|
30 |
+
"""
|
31 |
+
Processes user token, fetches LinkedIn token, fetches existing Bubble data (posts, mentions, follower stats),
|
32 |
+
and determines if an initial fetch or update is needed for each data type.
|
33 |
+
Updates token state and UI for the sync button.
|
34 |
+
"""
|
35 |
+
logging.info(f"Processing token with URL user token: '{url_user_token}', Org URN: '{org_urn}'")
|
36 |
+
|
37 |
+
# Initialize or update state safely
|
38 |
+
new_state = token_state.copy() if token_state else {
|
39 |
+
"token": None, "client_id": None, "org_urn": None,
|
40 |
+
"bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0,
|
41 |
+
"bubble_mentions_df": pd.DataFrame(),
|
42 |
+
"bubble_follower_stats_df": pd.DataFrame(),
|
43 |
+
"url_user_token_temp_storage": None
|
44 |
+
}
|
45 |
+
new_state.update({
|
46 |
+
"org_urn": org_urn,
|
47 |
+
"bubble_posts_df": new_state.get("bubble_posts_df", pd.DataFrame()),
|
48 |
+
"fetch_count_for_api": new_state.get("fetch_count_for_api", 0),
|
49 |
+
"bubble_mentions_df": new_state.get("bubble_mentions_df", pd.DataFrame()),
|
50 |
+
"bubble_follower_stats_df": new_state.get("bubble_follower_stats_df", pd.DataFrame()),
|
51 |
+
"url_user_token_temp_storage": url_user_token
|
52 |
+
})
|
53 |
+
|
54 |
+
button_update = gr.update(visible=False, interactive=False, value="π Sync LinkedIn Data") # Default to hidden
|
55 |
+
|
56 |
+
client_id = os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR)
|
57 |
+
new_state["client_id"] = client_id if client_id else "ENV VAR MISSING"
|
58 |
+
if not client_id: logging.error(f"CRITICAL ERROR: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set.")
|
59 |
+
|
60 |
+
# Fetch LinkedIn Token from Bubble
|
61 |
+
if url_user_token and "not found" not in url_user_token and "Could not access" not in url_user_token:
|
62 |
+
logging.info(f"Attempting to fetch LinkedIn token from Bubble with user token: {url_user_token}")
|
63 |
+
try:
|
64 |
+
parsed_linkedin_token = fetch_linkedin_token_from_bubble(url_user_token)
|
65 |
+
if isinstance(parsed_linkedin_token, dict) and "access_token" in parsed_linkedin_token:
|
66 |
+
new_state["token"] = parsed_linkedin_token
|
67 |
+
logging.info("β
LinkedIn Token successfully fetched from Bubble.")
|
68 |
+
else:
|
69 |
+
new_state["token"] = None
|
70 |
+
logging.warning(f"β Failed to fetch a valid LinkedIn token from Bubble. Response: {parsed_linkedin_token}")
|
71 |
+
except Exception as e:
|
72 |
+
new_state["token"] = None
|
73 |
+
logging.error(f"β Exception while fetching LinkedIn token from Bubble: {e}", exc_info=True)
|
74 |
+
else:
|
75 |
+
new_state["token"] = None
|
76 |
+
logging.info("No valid URL user token provided for LinkedIn token fetch, or an error was indicated.")
|
77 |
+
|
78 |
+
# Fetch existing data from Bubble if Org URN is available
|
79 |
+
current_org_urn = new_state.get("org_urn")
|
80 |
+
if current_org_urn:
|
81 |
+
# Fetch Posts from Bubble
|
82 |
+
logging.info(f"Attempting to fetch posts from Bubble for org_urn: {current_org_urn}")
|
83 |
+
try:
|
84 |
+
fetched_posts_df, error_message_posts = fetch_linkedin_posts_data_from_bubble(current_org_urn, BUBBLE_POSTS_TABLE_NAME)
|
85 |
+
new_state["bubble_posts_df"] = pd.DataFrame() if error_message_posts or fetched_posts_df is None else fetched_posts_df
|
86 |
+
if error_message_posts: logging.warning(f"Error fetching {BUBBLE_POSTS_TABLE_NAME} from Bubble: {error_message_posts}.")
|
87 |
+
except Exception as e:
|
88 |
+
logging.error(f"β Error fetching posts from Bubble: {e}.", exc_info=True)
|
89 |
+
new_state["bubble_posts_df"] = pd.DataFrame()
|
90 |
+
|
91 |
+
# Fetch Mentions from Bubble
|
92 |
+
logging.info(f"Attempting to fetch mentions from Bubble for org_urn: {current_org_urn}")
|
93 |
+
try:
|
94 |
+
fetched_mentions_df, error_message_mentions = fetch_linkedin_posts_data_from_bubble(current_org_urn, BUBBLE_MENTIONS_TABLE_NAME)
|
95 |
+
new_state["bubble_mentions_df"] = pd.DataFrame() if error_message_mentions or fetched_mentions_df is None else fetched_mentions_df
|
96 |
+
if error_message_mentions: logging.warning(f"Error fetching {BUBBLE_MENTIONS_TABLE_NAME} from Bubble: {error_message_mentions}.")
|
97 |
+
except Exception as e:
|
98 |
+
logging.error(f"β Error fetching mentions from Bubble: {e}.", exc_info=True)
|
99 |
+
new_state["bubble_mentions_df"] = pd.DataFrame()
|
100 |
+
|
101 |
+
# Fetch Follower Stats from Bubble
|
102 |
+
logging.info(f"Attempting to fetch follower stats from Bubble for org_urn: {current_org_urn}")
|
103 |
+
try:
|
104 |
+
fetched_follower_stats_df, error_message_fs = fetch_linkedin_posts_data_from_bubble(current_org_urn, BUBBLE_FOLLOWER_STATS_TABLE_NAME)
|
105 |
+
new_state["bubble_follower_stats_df"] = pd.DataFrame() if error_message_fs or fetched_follower_stats_df is None else fetched_follower_stats_df
|
106 |
+
if error_message_fs: logging.warning(f"Error fetching {BUBBLE_FOLLOWER_STATS_TABLE_NAME} from Bubble: {error_message_fs}.")
|
107 |
+
except Exception as e:
|
108 |
+
logging.error(f"β Error fetching follower stats from Bubble: {e}.", exc_info=True)
|
109 |
+
new_state["bubble_follower_stats_df"] = pd.DataFrame()
|
110 |
+
else:
|
111 |
+
logging.warning("Org URN not available in state. Cannot fetch data from Bubble.")
|
112 |
+
new_state["bubble_posts_df"] = pd.DataFrame()
|
113 |
+
new_state["bubble_mentions_df"] = pd.DataFrame()
|
114 |
+
new_state["bubble_follower_stats_df"] = pd.DataFrame()
|
115 |
+
|
116 |
+
# Determine fetch count for Posts API
|
117 |
+
if new_state["bubble_posts_df"].empty:
|
118 |
+
logging.info(f"βΉοΈ No posts in Bubble. Setting to fetch initial {DEFAULT_INITIAL_FETCH_COUNT} posts.")
|
119 |
+
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
120 |
+
else:
|
121 |
+
try:
|
122 |
+
df_posts_check = new_state["bubble_posts_df"].copy()
|
123 |
+
if BUBBLE_POST_DATE_COLUMN_NAME not in df_posts_check.columns or df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME].isnull().all():
|
124 |
+
logging.warning(f"Date column '{BUBBLE_POST_DATE_COLUMN_NAME}' for posts missing or all null values. Triggering initial fetch.")
|
125 |
+
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
126 |
+
else:
|
127 |
+
df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME] = pd.to_datetime(df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME], errors='coerce', utc=True)
|
128 |
+
last_post_date_utc = df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME].dropna().max()
|
129 |
+
if pd.isna(last_post_date_utc):
|
130 |
+
logging.warning("No valid post dates found after conversion. Triggering initial fetch.")
|
131 |
+
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
132 |
+
else:
|
133 |
+
days_diff = (pd.Timestamp('now', tz='UTC').normalize() - last_post_date_utc.normalize()).days
|
134 |
+
if days_diff >= 7:
|
135 |
+
new_state['fetch_count_for_api'] = max(1, days_diff // 7) * 10
|
136 |
+
logging.info(f"Posts data is {days_diff} days old. Setting fetch count to {new_state['fetch_count_for_api']}.")
|
137 |
+
else:
|
138 |
+
new_state['fetch_count_for_api'] = 0
|
139 |
+
logging.info("Posts data is recent. No new posts fetch needed based on date.")
|
140 |
+
except Exception as e:
|
141 |
+
logging.error(f"Error processing post dates: {e}. Defaulting to initial fetch for posts.", exc_info=True)
|
142 |
+
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
143 |
+
|
144 |
+
# Determine if Mentions need sync
|
145 |
+
mentions_need_sync = False
|
146 |
+
if new_state["bubble_mentions_df"].empty:
|
147 |
+
mentions_need_sync = True
|
148 |
+
logging.info("Mentions need sync: Bubble mentions DF is empty.")
|
149 |
+
else:
|
150 |
+
if BUBBLE_MENTIONS_DATE_COLUMN_NAME not in new_state["bubble_mentions_df"].columns or \
|
151 |
+
new_state["bubble_mentions_df"][BUBBLE_MENTIONS_DATE_COLUMN_NAME].isnull().all():
|
152 |
+
mentions_need_sync = True
|
153 |
+
logging.info(f"Mentions need sync: Date column '{BUBBLE_MENTIONS_DATE_COLUMN_NAME}' missing or all null values.")
|
154 |
+
else:
|
155 |
+
df_mentions_check = new_state["bubble_mentions_df"].copy()
|
156 |
+
df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce', utc=True)
|
157 |
+
last_mention_date_utc = df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dropna().max()
|
158 |
+
if pd.isna(last_mention_date_utc) or \
|
159 |
+
(pd.Timestamp('now', tz='UTC').normalize() - last_mention_date_utc.normalize()).days >= 7:
|
160 |
+
mentions_need_sync = True
|
161 |
+
logging.info(f"Mentions need sync: Last mention date {last_mention_date_utc} is old or invalid.")
|
162 |
+
else:
|
163 |
+
logging.info(f"Mentions up-to-date. Last mention: {last_mention_date_utc}")
|
164 |
+
|
165 |
+
# Determine if Follower Stats need sync
|
166 |
+
follower_stats_need_sync = False
|
167 |
+
fs_df = new_state.get("bubble_follower_stats_df", pd.DataFrame())
|
168 |
+
if fs_df.empty:
|
169 |
+
follower_stats_need_sync = True
|
170 |
+
logging.info("Follower stats need sync: Bubble follower stats DF is empty.")
|
171 |
+
else:
|
172 |
+
monthly_gains_df = fs_df[fs_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].copy()
|
173 |
+
if monthly_gains_df.empty:
|
174 |
+
follower_stats_need_sync = True
|
175 |
+
logging.info("Follower stats need sync: No monthly gains data in Bubble.")
|
176 |
+
elif FOLLOWER_STATS_CATEGORY_COLUMN not in monthly_gains_df.columns:
|
177 |
+
follower_stats_need_sync = True
|
178 |
+
logging.info(f"Follower stats need sync: Date column '{FOLLOWER_STATS_CATEGORY_COLUMN}' missing in monthly gains.")
|
179 |
+
else:
|
180 |
+
monthly_gains_df.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = pd.to_datetime(monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce').dt.normalize()
|
181 |
+
last_gain_date = monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN].dropna().max()
|
182 |
+
if pd.isna(last_gain_date):
|
183 |
+
follower_stats_need_sync = True
|
184 |
+
logging.info("Follower stats need sync: No valid dates in monthly gains after conversion.")
|
185 |
+
else:
|
186 |
+
if last_gain_date.tzinfo is None or last_gain_date.tzinfo.utcoffset(last_gain_date) is None:
|
187 |
+
last_gain_date = last_gain_date.tz_localize('UTC') # Localize naive to UTC
|
188 |
+
else:
|
189 |
+
last_gain_date = last_gain_date.tz_convert('UTC') # Convert aware to UTC
|
190 |
+
|
191 |
+
start_of_current_month = pd.Timestamp('now', tz='UTC').normalize().replace(day=1)
|
192 |
+
if last_gain_date < start_of_current_month:
|
193 |
+
follower_stats_need_sync = True
|
194 |
+
logging.info(f"Follower stats need sync: Last gain date {last_gain_date} is before current month start {start_of_current_month}.")
|
195 |
+
else:
|
196 |
+
logging.info(f"Follower monthly gains up-to-date. Last gain recorded on: {last_gain_date}")
|
197 |
+
|
198 |
+
if fs_df[fs_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'].empty:
|
199 |
+
follower_stats_need_sync = True
|
200 |
+
logging.info("Follower stats need sync: Demographic data (non-monthly types) missing.")
|
201 |
+
|
202 |
+
# Update Sync Button based on token and needed actions
|
203 |
+
sync_actions = []
|
204 |
+
if new_state['fetch_count_for_api'] > 0:
|
205 |
+
sync_actions.append(f"{new_state['fetch_count_for_api']} Posts")
|
206 |
+
if mentions_need_sync: # This flag is set based on data freshness
|
207 |
+
sync_actions.append("Mentions")
|
208 |
+
if follower_stats_need_sync: # This flag is set based on data freshness
|
209 |
+
sync_actions.append("Follower Stats")
|
210 |
+
|
211 |
+
if new_state["token"] and sync_actions:
|
212 |
+
button_label = f"π Sync LinkedIn Data ({', '.join(sync_actions)})"
|
213 |
+
button_update = gr.update(value=button_label, visible=True, interactive=True)
|
214 |
+
elif new_state["token"]:
|
215 |
+
button_label = "β
Data Up-to-Date"
|
216 |
+
button_update = gr.update(value=button_label, visible=True, interactive=False)
|
217 |
+
else:
|
218 |
+
button_update = gr.update(visible=False, interactive=False)
|
219 |
+
|
220 |
+
token_status_message = check_token_status(new_state)
|
221 |
+
logging.info(f"Token processing complete. Status: {token_status_message}. Button: {button_update}. Sync actions: {sync_actions}")
|
222 |
+
return token_status_message, new_state, button_update
|