# -*- coding: utf-8 -*- import gradio as gr import json from Data_Fetching_and_Rendering import fetch_and_render_dashboard from analytics_fetch_and_rendering import fetch_and_render_analytics from mentions_dashboard import generate_mentions_dashboard # Shared state token_received = {"status": False, "token": None, "client_id": None} # --- Handlers for token reception and status --- def receive_token(accessToken: str, client_id: str): """ Called by a hidden POST mechanism to supply the OAuth code/token and client ID. """ try: token_dict = json.loads(accessToken.replace("'", '"')) except json.JSONDecodeError as e: return { "status": "❌ Invalid token format", "token": "", "client_id": client_id } token_received["status"] = True token_received["token"] = token_dict token_received["client_id"] = client_id return { "status": "✅ Token received", "token": token_dict.get("access_token", ""), "client_id": client_id } def check_status(): return "✅ Token received" if token_received["status"] else "❌ Waiting for token…" def show_token(): return token_received["token"].get("access_token", "") if token_received["status"] else "" def show_client(): return token_received["client_id"] or "" if token_received["status"] else "" # --- Guarded fetch functions --- def guarded_fetch_dashboard(): if not token_received["status"]: return "

❌ Access denied. No token available. Please send token first.

" # token_received["client_id"] and token_received["token"] required by fetch function html = fetch_and_render_dashboard( token_received["client_id"], token_received["token"] ) return html def guarded_fetch_analytics(): if not token_received["status"]: return ( "

❌ Access denied. No token available.

", None, None ) count_md, plot, growth_plot = fetch_and_render_analytics( token_received["client_id"], token_received["token"] ) return count_md, plot, growth_plot def run_mentions_and_load(): html, fig = generate_mentions_dashboard( token_received["client_id"], token_received["token"] ) return html, fig # --- Build the Gradio UI --- with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="LinkedIn Post Viewer & Analytics") as app: gr.Markdown("# 🚀 LinkedIn Organization Post Viewer & Analytics") gr.Markdown("Send your OAuth token via API call, then explore dashboard and analytics.") # Hidden elements: simulate POST endpoint hidden_token = gr.Textbox(visible=False, elem_id="hidden_token") hidden_client = gr.Textbox(visible=False, elem_id="hidden_client_id") hidden_btn = gr.Button(visible=False, elem_id="hidden_btn") status_box = gr.Textbox(value=check_status(), label="Status", interactive=False) token_display = gr.Textbox(value=show_token(), label="Access Token", interactive=False) client_display = gr.Textbox(value=show_client(), label="Client ID", interactive=False) # Wire hidden POST handler hidden_btn.click( fn=receive_token, inputs=[hidden_token, hidden_client], outputs=[status_box, token_display, client_display] ) # Polling timer to update status and displays timer = gr.Timer(1.0) timer.tick(fn=check_status, outputs=status_box) timer.tick(fn=show_token, outputs=token_display) timer.tick(fn=show_client, outputs=client_display) # Tabs for functionality with gr.Tabs(): with gr.TabItem("1️⃣ Dashboard"): gr.Markdown("View your organization's recent posts and their engagement statistics.") fetch_dashboard_btn = gr.Button("📊 Fetch Posts & Stats", variant="primary") dashboard_html = gr.HTML(value="

Waiting for token...

") fetch_dashboard_btn.click( fn=guarded_fetch_dashboard, inputs=[], outputs=[dashboard_html] ) with gr.TabItem("2️⃣ Analytics"): gr.Markdown("View follower count and monthly gains for your organization.") fetch_analytics_btn = gr.Button("📈 Fetch Follower Analytics", variant="primary") follower_count = gr.Markdown("

Waiting for token...

") with gr.Row(): # Use Row to align the two plots side-by-side follower_plot = gr.Plot(visible=False) growth_rate_plot = gr.Plot(visible=False) fetch_analytics_btn.click( fn=guarded_fetch_analytics, inputs=[], outputs=[follower_count, follower_plot, growth_rate_plot] ) with gr.TabItem("3️⃣ Mentions"): gr.Markdown("Analyze sentiment of recent posts that mention your organization.") fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary") mentions_html = gr.HTML() mentions_plot = gr.Plot(visible=False) fetch_mentions_btn.click( fn=run_mentions_and_load, inputs=[], outputs=[mentions_html, mentions_plot] ) # Launch the app if __name__ == "__main__": app.launch(server_name="0.0.0.0", server_port=7860, share=True)