# -- coding: utf-8 -- import gradio as gr import json import os import logging import html import pandas as pd # Ensure pandas is imported if you're dealing with DataFrames # Import functions from your custom modules from Data_Fetching_and_Rendering import fetch_and_render_dashboard from analytics_fetch_and_rendering import fetch_and_render_analytics from mentions_dashboard import generate_mentions_dashboard from gradio_utils import get_url_user_token # Updated import to include fetch_posts_from_bubble from Bubble_API_Calls import ( fetch_linkedin_token_from_bubble, bulk_upload_to_bubble, fetch_posts_from_bubble # Added new function ) from Linkedin_Data_API_Calls import ( fetch_linkedin_posts_core, fetch_comments, analyze_sentiment, compile_detailed_posts, prepare_data_for_bubble ) # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') def check_token_status(token_state): """Checks the status of the LinkedIn token.""" return "✅ Token available" if token_state and token_state.get("token") else "❌ Token not available" def process_and_store_bubble_token(url_user_token, org_urn, token_state): """ Processes the user token from the URL, fetches LinkedIn token from Bubble, fetches initial posts from Bubble, and updates the token state and UI accordingly. Returns updates for status_box, token_state, and sync_posts_to_bubble_btn. """ logging.info(f"Processing token with URL user token: '{url_user_token}', Org URN: '{org_urn}'") # Initialize or copy existing state, adding bubble_posts_df new_state = token_state.copy() if token_state else {"token": None, "client_id": None, "org_urn": None, "bubble_posts_df": None} # Ensure org_urn is updated from input, and bubble_posts_df is reset/initialized for this run. # Token will be set later if fetched. new_state.update({"org_urn": org_urn, "bubble_posts_df": None, "token": new_state.get("token")}) # Determine button properties - default to hidden and non-interactive button_visible = True button_interactive = True client_id = os.environ.get("Linkedin_client_id") if not client_id: logging.error("CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.") new_state["client_id"] = "ENV VAR MISSING" else: new_state["client_id"] = client_id # Attempt to fetch LinkedIn token from Bubble (related to LinkedIn API access) if url_user_token and "not found" not in url_user_token and "Could not access" not in url_user_token: logging.info(f"Attempting to fetch LinkedIn token from Bubble with user token: {url_user_token}") try: parsed_linkedin_token = fetch_linkedin_token_from_bubble(url_user_token) if isinstance(parsed_linkedin_token, dict) and "access_token" in parsed_linkedin_token: new_state["token"] = parsed_linkedin_token # Update token in new_state logging.info("✅ LinkedIn Token successfully fetched from Bubble.") else: new_state["token"] = None # Explicitly set to None if fetch fails logging.warning(f"❌ Failed to fetch a valid LinkedIn token from Bubble. Response: {parsed_linkedin_token}") except Exception as e: new_state["token"] = None # Explicitly set to None on error logging.error(f"❌ Exception while fetching LinkedIn token from Bubble: {e}") else: new_state["token"] = None # Ensure token is None if no valid url_user_token logging.info("No valid URL user token provided for LinkedIn token fetch, or an error was indicated.") # Fetch posts from Bubble using org_urn current_org_urn = new_state.get("org_urn") if current_org_urn: logging.info(f"Attempting to fetch posts from Bubble for org_urn: {current_org_urn}") try: # Assuming fetch_posts_from_bubble returns a Pandas DataFrame or None bubble_posts_df, error_message = fetch_posts_from_bubble(current_org_urn) new_state["bubble_posts_df"] = bubble_posts_df # Store DataFrame in state logging.info(f"df {len(bubble_posts_df)}") if bubble_posts_df is not None and not new_state["bubble_posts_df"].empty: logging.info(f"✅ Successfully fetched {len(bubble_posts_df)} posts from Bubble. Sync button will be disabled.") button_visible = False button_interactive = False else: logging.info("ℹ️ No posts found in Bubble for this organization or DataFrame is empty. Sync button will get visible.") # button_visible and button_interactive remain False except Exception as e: logging.error(f"❌ Error fetching posts from Bubble: {e}") # button_visible and button_interactive remain False else: logging.warning("Org URN not available in state. Cannot fetch posts from Bubble.") # button_visible and button_interactive remain False token_status_message = check_token_status(new_state) # Check based on potentially updated new_state["token"] # Log the determined visibility before creating the update object logging.info(f"Token processing complete. LinkedIn Token Status: {token_status_message}. Button visible: {button_visible}, Button interactive: {button_interactive}") # Create a gr.update object for the button button_component_update = gr.update(visible=button_visible, interactive=button_interactive) return token_status_message, new_state, button_component_update def guarded_fetch_posts(token_state): """ Fetches LinkedIn posts, analyzes them, and uploads to Bubble. This function is guarded by token availability. """ logging.info("Starting guarded_fetch_posts process.") if not token_state or not token_state.get("token"): # Checks for LinkedIn token logging.error("Access denied for guarded_fetch_posts. No LinkedIn token available.") return "
❌ Access denied. LinkedIn token not available. Please ensure token is fetched via URL parameter.
" client_id = token_state.get("client_id") token_dict = token_state.get("token") # This is the LinkedIn token dict org_urn = token_state.get('org_urn') if not org_urn: logging.error("Organization URN (org_urn) not found in token_state for guarded_fetch_posts.") return "❌ Configuration error: Organization URN missing.
" if not client_id or client_id == "ENV VAR MISSING": logging.error("Client ID not found or missing in token_state for guarded_fetch_posts.") return "❌ Configuration error: LinkedIn Client ID missing (check .env file or environment variables).
" # Additional check: Ensure the button was meant to be clickable (i.e., Bubble posts were found) # This is an indirect check, as the button's clickability should prevent this if UI works as intended. # However, adding a check on bubble_posts_df might be redundant if the button is correctly managed. # For now, relying on the LinkedIn token check as the primary guard for this function. try: logging.info(f"Step 1: Fetching core posts for org_urn: {org_urn} using LinkedIn API.") processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn) if not processed_raw_posts: logging.info("No posts found to process via LinkedIn API after step 1.") return "ℹ️ No new LinkedIn posts found to process at this time.
" post_urns = [post["id"] for post in processed_raw_posts if post.get("id")] logging.info(f"Extracted {len(post_urns)} post URNs for further processing.") logging.info("Step 2: Fetching comments via LinkedIn API.") all_comments_data = fetch_comments(client_id, token_dict, post_urns, stats_map) logging.info("Step 3: Analyzing sentiment.") sentiments_per_post = analyze_sentiment(all_comments_data) logging.info("Step 4: Compiling detailed posts.") detailed_posts = compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post) logging.info("Step 5: Preparing data for Bubble.") li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_posts, all_comments_data) logging.info("Step 6: Uploading data to Bubble.") bulk_upload_to_bubble(li_posts, "LI_posts") bulk_upload_to_bubble(li_post_stats, "LI_post_stats") bulk_upload_to_bubble(li_post_comments, "LI_post_comments") logging.info("Successfully fetched from LinkedIn and uploaded posts and comments to Bubble.") return "✅ Posts and comments from LinkedIn uploaded to Bubble.
" except ValueError as ve: logging.error(f"ValueError during LinkedIn data processing: {ve}") return f"❌ Error: {html.escape(str(ve))}
" except Exception as e: logging.exception("An unexpected error occurred in guarded_fetch_posts.") # Logs full traceback return "❌ An unexpected error occurred while processing LinkedIn data. Please check logs.
" def guarded_fetch_dashboard(token_state): """Fetches and renders the dashboard if token is available.""" if not token_state or not token_state.get("token"): return "❌ Access denied. No token available for dashboard." return "Dashboard content would load here if implemented.
" def guarded_fetch_analytics(token_state): """Fetches and renders analytics if token is available.""" if not token_state or not token_state.get("token"): return ("❌ Access denied. No token available for analytics.", None, None, None, None, None, None, None) return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token")) def run_mentions_and_load(token_state): """Generates mentions dashboard if token is available.""" if not token_state or not token_state.get("token"): return ("❌ Access denied. No token available for mentions.", None) return generate_mentions_dashboard(token_state.get("client_id"), token_state.get("token")) # --- Gradio UI Blocks --- with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="LinkedIn Post Viewer & Analytics") as app: # Initialize state with the new field for Bubble DataFrame token_state = gr.State(value={"token": None, "client_id": None, "org_urn": None, "bubble_posts_df": None}) gr.Markdown("# 🚀 LinkedIn Organization Post Viewer & Analytics") gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.") url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False) status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...") org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False) app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display]) with gr.Tabs(): with gr.TabItem("1️⃣ Dashboard & Sync"): gr.Markdown("Fetch initial data from Bubble. If posts are found, you can choose to sync newer posts from LinkedIn.") sync_posts_to_bubble_btn = gr.Button( "🔄 Fetch from LinkedIn, Analyze & Store to Bubble", # Updated label for clarity variant="primary", visible=False, interactive=False ) dashboard_html_output = gr.HTML( "System initializing... " "Checking for existing data in Bubble. The 'Fetch from LinkedIn...' button will activate if initial data is found.
" ) # Combined trigger: process tokens and Bubble data once both URL params are potentially loaded. # Using .then() to chain after initial load. # The `process_and_store_bubble_token` will run when `org_urn_display` (which is an output of app.load) # receives its value. org_urn_display.change( fn=process_and_store_bubble_token, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_posts_to_bubble_btn] ) # Fallback if url_user_token_display changes after org_urn_display (less likely but for robustness) url_user_token_display.change( fn=process_and_store_bubble_token, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_posts_to_bubble_btn] ) sync_posts_to_bubble_btn.click( fn=guarded_fetch_posts, inputs=[token_state], outputs=[dashboard_html_output] ) with gr.TabItem("2️⃣ Analytics"): gr.Markdown("View follower count and monthly gains for your organization (requires LinkedIn token).") fetch_analytics_btn = gr.Button("📈 Fetch Follower Analytics", variant="primary") follower_count = gr.Markdown("Waiting for LinkedIn token...
") with gr.Row(): follower_plot, growth_plot = gr.Plot(), gr.Plot() with gr.Row(): eng_rate_plot = gr.Plot() with gr.Row(): interaction_plot = gr.Plot() with gr.Row(): eb_plot = gr.Plot() with gr.Row(): mentions_vol_plot, mentions_sentiment_plot = gr.Plot(), gr.Plot() fetch_analytics_btn.click( fn=guarded_fetch_analytics, inputs=[token_state], outputs=[follower_count, follower_plot, growth_plot, eng_rate_plot, interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot] ) with gr.TabItem("3️⃣ Mentions"): gr.Markdown("Analyze sentiment of recent posts that mention your organization (requires LinkedIn token).") fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary") mentions_html = gr.HTML("Waiting for LinkedIn token...
") mentions_plot = gr.Plot() fetch_mentions_btn.click( fn=run_mentions_and_load, inputs=[token_state], outputs=[mentions_html, mentions_plot] ) # This app.load updates the status_box based on the initial token_state. # The process_and_store_bubble_token function will provide a more definitive update soon after. app.load(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box) # Timer to periodically update the LinkedIn token status display gr.Timer(15.0).tick(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box) if __name__ == "__main__": if not os.environ.get("Linkedin_client_id"): logging.warning("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly for LinkedIn API calls.") app.launch(server_name="0.0.0.0", server_port=7860, share=True)