# app.py # (Showing relevant parts that need modification) import gradio as gr import pandas as pd import os import logging import matplotlib matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio import matplotlib.pyplot as plt import time # For profiling if needed from datetime import datetime, timedelta # Added timedelta import numpy as np # --- Module Imports --- from gradio_utils import get_url_user_token # Functions from newly created/refactored modules from config import ( LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR) from state_manager import process_and_store_bubble_token from sync_logic import sync_all_linkedin_data_orchestrator from ui_generators import ( display_main_dashboard, run_mentions_tab_display, run_follower_stats_tab_display, build_analytics_tab_plot_area, BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON ) from analytics_data_processing import prepare_filtered_analytics_data # This is key for data structure from analytics_plot_generator import ( generate_posts_activity_plot, generate_mentions_activity_plot, generate_mention_sentiment_plot, generate_followers_count_over_time_plot, generate_followers_growth_rate_plot, generate_followers_by_demographics_plot, generate_engagement_rate_over_time_plot, generate_reach_over_time_plot, generate_impressions_over_time_plot, create_placeholder_plot, generate_likes_over_time_plot, generate_clicks_over_time_plot, generate_shares_over_time_plot, generate_comments_over_time_plot, generate_comments_sentiment_breakdown_plot, generate_post_frequency_plot, generate_content_format_breakdown_plot, generate_content_topic_breakdown_plot ) from formulas import PLOT_FORMULAS # --- NEW CHATBOT MODULE IMPORTS --- from chatbot_prompts import get_initial_insight_prompt_and_suggestions # MODIFIED IMPORT from chatbot_handler import generate_llm_response # --- END NEW CHATBOT MODULE IMPORTS --- # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s') # Mapping from plot_configs IDs to PLOT_FORMULAS keys PLOT_ID_TO_FORMULA_KEY_MAP = { "posts_activity": "posts_activity", "mentions_activity": "mentions_activity", "mention_sentiment": "mention_sentiment", "followers_count": "followers_count_over_time", "followers_growth_rate": "followers_growth_rate", "followers_by_location": "followers_by_demographics", "followers_by_role": "followers_by_demographics", "followers_by_industry": "followers_by_demographics", "followers_by_seniority": "followers_by_demographics", "engagement_rate": "engagement_rate_over_time", "reach_over_time": "reach_over_time", "impressions_over_time": "impressions_over_time", "likes_over_time": "likes_over_time", "clicks_over_time": "clicks_over_time", "shares_over_time": "shares_over_time", "comments_over_time": "comments_over_time", "comments_sentiment": "comments_sentiment_breakdown", "post_frequency_cs": "post_frequency", "content_format_breakdown_cs": "content_format_breakdown", "content_topic_breakdown_cs": "content_topic_breakdown", "mention_analysis_volume": "mentions_activity", "mention_analysis_sentiment": "mention_sentiment" } # --- Helper function to generate textual data summaries for chatbot --- def generate_chatbot_data_summaries( plot_configs_list, filtered_merged_posts_df, filtered_mentions_df, date_filtered_follower_stats_df, # Expected to contain 'follower_gains_monthly' raw_follower_stats_df, # Expected to contain other demographics like 'follower_geo', 'follower_industry' token_state_value ): """ Generates textual summaries for each plot ID to be used by the chatbot, based on the corrected understanding of DataFrame structures and follower count columns. """ data_summaries = {} # --- Date and Config Columns from token_state --- # For Posts date_col_posts = token_state_value.get("config_date_col_posts", "published_at") media_type_col_name = token_state_value.get("config_media_type_col", "media_type") eb_labels_col_name = token_state_value.get("config_eb_labels_col", "li_eb_label") # For Mentions date_col_mentions = token_state_value.get("config_date_col_mentions", "date") mentions_sentiment_col = "sentiment_label" # As per user's mention df structure # For Follower Stats - Actual column names provided by user follower_count_organic_col = "follower_count_organic" follower_count_paid_col = "follower_count_paid" # For Follower Stats (Demographics from raw_follower_stats_df) follower_demographics_type_col = "follower_count_type" # Column indicating 'follower_geo', 'follower_industry' follower_demographics_category_col = "category_name" # Column indicating 'USA', 'Technology' # For Follower Gains/Growth (from date_filtered_follower_stats_df) follower_gains_type_col = "follower_count_type" # Should be 'follower_gains_monthly' follower_gains_date_col = "category_name" # This is 'YYYY-MM-DD' # --- Helper: Safely convert to datetime --- def safe_to_datetime(series, errors='coerce'): return pd.to_datetime(series, errors=errors) # --- Prepare DataFrames (copy and convert dates) --- if filtered_merged_posts_df is not None and not filtered_merged_posts_df.empty: posts_df = filtered_merged_posts_df.copy() if date_col_posts in posts_df.columns: posts_df[date_col_posts] = safe_to_datetime(posts_df[date_col_posts]) else: logging.warning(f"Date column '{date_col_posts}' not found in posts_df for chatbot summary.") else: posts_df = pd.DataFrame() if filtered_mentions_df is not None and not filtered_mentions_df.empty: mentions_df = filtered_mentions_df.copy() if date_col_mentions in mentions_df.columns: mentions_df[date_col_mentions] = safe_to_datetime(mentions_df[date_col_mentions]) else: logging.warning(f"Date column '{date_col_mentions}' not found in mentions_df for chatbot summary.") else: mentions_df = pd.DataFrame() # For date_filtered_follower_stats_df (monthly gains) if date_filtered_follower_stats_df is not None and not date_filtered_follower_stats_df.empty: follower_monthly_df = date_filtered_follower_stats_df.copy() if follower_gains_type_col in follower_monthly_df.columns: follower_monthly_df = follower_monthly_df[follower_monthly_df[follower_gains_type_col] == 'follower_gains_monthly'].copy() if follower_gains_date_col in follower_monthly_df.columns: follower_monthly_df['datetime_obj'] = safe_to_datetime(follower_monthly_df[follower_gains_date_col]) follower_monthly_df = follower_monthly_df.dropna(subset=['datetime_obj']) # Calculate total gains if follower_count_organic_col in follower_monthly_df.columns and follower_count_paid_col in follower_monthly_df.columns: follower_monthly_df[follower_count_organic_col] = pd.to_numeric(follower_monthly_df[follower_count_organic_col], errors='coerce').fillna(0) follower_monthly_df[follower_count_paid_col] = pd.to_numeric(follower_monthly_df[follower_count_paid_col], errors='coerce').fillna(0) follower_monthly_df['total_monthly_gains'] = follower_monthly_df[follower_count_organic_col] + follower_monthly_df[follower_count_paid_col] elif follower_count_organic_col in follower_monthly_df.columns: # Only organic exists follower_monthly_df[follower_count_organic_col] = pd.to_numeric(follower_monthly_df[follower_count_organic_col], errors='coerce').fillna(0) follower_monthly_df['total_monthly_gains'] = follower_monthly_df[follower_count_organic_col] elif follower_count_paid_col in follower_monthly_df.columns: # Only paid exists follower_monthly_df[follower_count_paid_col] = pd.to_numeric(follower_monthly_df[follower_count_paid_col], errors='coerce').fillna(0) follower_monthly_df['total_monthly_gains'] = follower_monthly_df[follower_count_paid_col] else: logging.warning(f"Neither '{follower_count_organic_col}' nor '{follower_count_paid_col}' found in follower_monthly_df for total gains calculation.") follower_monthly_df['total_monthly_gains'] = 0 # Avoid KeyError later else: logging.warning(f"Date column '{follower_gains_date_col}' (from category_name) not found in follower_monthly_df for chatbot summary.") if 'datetime_obj' not in follower_monthly_df.columns: follower_monthly_df['datetime_obj'] = pd.NaT if 'total_monthly_gains' not in follower_monthly_df.columns: follower_monthly_df['total_monthly_gains'] = 0 else: follower_monthly_df = pd.DataFrame(columns=[follower_gains_date_col, 'total_monthly_gains', 'datetime_obj']) if raw_follower_stats_df is not None and not raw_follower_stats_df.empty: follower_demographics_df = raw_follower_stats_df.copy() # Calculate total followers for demographics if follower_count_organic_col in follower_demographics_df.columns and follower_count_paid_col in follower_demographics_df.columns: follower_demographics_df[follower_count_organic_col] = pd.to_numeric(follower_demographics_df[follower_count_organic_col], errors='coerce').fillna(0) follower_demographics_df[follower_count_paid_col] = pd.to_numeric(follower_demographics_df[follower_count_paid_col], errors='coerce').fillna(0) follower_demographics_df['total_follower_count'] = follower_demographics_df[follower_count_organic_col] + follower_demographics_df[follower_count_paid_col] elif follower_count_organic_col in follower_demographics_df.columns: follower_demographics_df[follower_count_organic_col] = pd.to_numeric(follower_demographics_df[follower_count_organic_col], errors='coerce').fillna(0) follower_demographics_df['total_follower_count'] = follower_demographics_df[follower_count_organic_col] elif follower_count_paid_col in follower_demographics_df.columns: follower_demographics_df[follower_count_paid_col] = pd.to_numeric(follower_demographics_df[follower_count_paid_col], errors='coerce').fillna(0) follower_demographics_df['total_follower_count'] = follower_demographics_df[follower_count_paid_col] else: logging.warning(f"Neither '{follower_count_organic_col}' nor '{follower_count_paid_col}' found in follower_demographics_df for total count calculation.") if 'total_follower_count' not in follower_demographics_df.columns: follower_demographics_df['total_follower_count'] = 0 else: follower_demographics_df = pd.DataFrame() for plot_cfg in plot_configs_list: plot_id = plot_cfg["id"] plot_label = plot_cfg["label"] summary_text = f"No specific data summary available for '{plot_label}' for the selected period." try: # --- FOLLOWER STATS --- if plot_id == "followers_count": # Uses follower_monthly_df if not follower_monthly_df.empty and 'total_monthly_gains' in follower_monthly_df.columns and 'datetime_obj' in follower_monthly_df.columns and not follower_monthly_df['datetime_obj'].isnull().all(): df_summary = follower_monthly_df[['datetime_obj', 'total_monthly_gains']].copy() df_summary['datetime_obj'] = df_summary['datetime_obj'].dt.strftime('%Y-%m-%d') df_summary.rename(columns={'datetime_obj': 'Date', 'total_monthly_gains': 'Total Monthly Gains'}, inplace=True) summary_text = f"Follower Count (Total Monthly Gains):\n{df_summary.sort_values(by='Date').tail(5).to_string(index=False)}" else: summary_text = f"Follower count data (total monthly gains) is unavailable or incomplete for '{plot_label}'." elif plot_id == "followers_growth_rate": # Uses follower_monthly_df if not follower_monthly_df.empty and 'total_monthly_gains' in follower_monthly_df.columns and 'datetime_obj' in follower_monthly_df.columns and not follower_monthly_df['datetime_obj'].isnull().all(): df_calc = follower_monthly_df.sort_values(by='datetime_obj').copy() # Growth rate is calculated on the total monthly gains (which are changes, not cumulative counts) # To calculate growth rate of followers, we'd need cumulative follower count. # The plot logic also uses pct_change on the gains themselves. # If 'total_monthly_gains' represents the *change* in followers, then pct_change on this is rate of change of gains. # If it represents the *cumulative* followers at that point, then pct_change is follower growth rate. # Assuming 'total_monthly_gains' is the *change* for the month, like the plot logic. df_calc['total_monthly_gains'] = pd.to_numeric(df_calc['total_monthly_gains'], errors='coerce') if len(df_calc) >= 2: # Calculate cumulative sum to get follower count if 'total_monthly_gains' are indeed just gains # If your 'total_monthly_gains' already IS the total follower count at end of month, remove next line # For now, assuming it's GAINS, so we need cumulative for growth rate of total followers. # However, the original plot logic applies pct_change directly to 'follower_gains_monthly'. # Let's stick to pct_change on the gains/count column for consistency with plot. # If 'total_monthly_gains' is the actual follower count for that month: df_calc['growth_rate_monthly'] = df_calc['total_monthly_gains'].pct_change() * 100 df_calc['growth_rate_monthly'] = df_calc['growth_rate_monthly'].round(2) df_calc.replace([np.inf, -np.inf], np.nan, inplace=True) # Handle division by zero if a gain was 0 df_summary = df_calc[['datetime_obj', 'growth_rate_monthly']].dropna().copy() df_summary['datetime_obj'] = df_summary['datetime_obj'].dt.strftime('%Y-%m-%d') df_summary.rename(columns={'datetime_obj': 'Date', 'growth_rate_monthly': 'Growth Rate (%)'}, inplace=True) if not df_summary.empty: summary_text = f"Follower Growth Rate (Monthly % based on Total Follower Count/Gains):\n{df_summary.sort_values(by='Date').tail(5).to_string(index=False)}" else: summary_text = f"Not enough data points or valid transitions to calculate follower growth rate for '{plot_label}'." else: summary_text = f"Not enough data points (need at least 2) to calculate follower growth rate for '{plot_label}'." else: summary_text = f"Follower growth rate data (total monthly gains) is unavailable or incomplete for '{plot_label}'." elif plot_id in ["followers_by_location", "followers_by_role", "followers_by_industry", "followers_by_seniority"]: demographic_type_map = { "followers_by_location": "follower_geo", "followers_by_role": "follower_function", "followers_by_industry": "follower_industry", "followers_by_seniority": "follower_seniority" } current_demographic_type = demographic_type_map.get(plot_id) if not follower_demographics_df.empty and \ follower_demographics_type_col in follower_demographics_df.columns and \ follower_demographics_category_col in follower_demographics_df.columns and \ 'total_follower_count' in follower_demographics_df.columns: # Check for the calculated total df_filtered_demographics = follower_demographics_df[ follower_demographics_df[follower_demographics_type_col] == current_demographic_type ].copy() if not df_filtered_demographics.empty: df_summary = df_filtered_demographics.groupby(follower_demographics_category_col)['total_follower_count'].sum().reset_index() df_summary.rename(columns={follower_demographics_category_col: 'Category', 'total_follower_count': 'Total Follower Count'}, inplace=True) top_5 = df_summary.nlargest(5, 'Total Follower Count') summary_text = f"Top 5 {plot_label} (Total Followers):\n{top_5.to_string(index=False)}" else: summary_text = f"No data available for demographic type '{current_demographic_type}' in '{plot_label}'." else: summary_text = f"Follower demographic data columns (including total_follower_count) are missing or incomplete for '{plot_label}'." # --- POSTS STATS --- elif plot_id == "engagement_rate": if not posts_df.empty and 'engagement' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): df_resampled = posts_df.set_index(date_col_posts)['engagement'].resample('W').mean().reset_index() df_resampled['engagement'] = pd.to_numeric(df_resampled['engagement'], errors='coerce').round(2) df_summary = df_resampled[[date_col_posts, 'engagement']].dropna().copy() df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d') summary_text = f"Engagement Rate Over Time (Weekly Avg %):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}" else: summary_text = f"Engagement rate data is unavailable for '{plot_label}'." elif plot_id == "reach_over_time": if not posts_df.empty and 'reach' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): df_resampled = posts_df.set_index(date_col_posts)['reach'].resample('W').sum().reset_index() df_resampled['reach'] = pd.to_numeric(df_resampled['reach'], errors='coerce') df_summary = df_resampled[[date_col_posts, 'reach']].dropna().copy() df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d') summary_text = f"Reach Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}" else: summary_text = f"Reach data is unavailable for '{plot_label}'." elif plot_id == "impressions_over_time": if not posts_df.empty and 'impressionCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): df_resampled = posts_df.set_index(date_col_posts)['impressionCount'].resample('W').sum().reset_index() df_resampled['impressionCount'] = pd.to_numeric(df_resampled['impressionCount'], errors='coerce') df_summary = df_resampled[[date_col_posts, 'impressionCount']].dropna().copy() df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d') df_summary.rename(columns={'impressionCount': 'Impressions'}, inplace=True) summary_text = f"Impressions Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}" else: summary_text = f"Impressions data is unavailable for '{plot_label}'." elif plot_id == "likes_over_time": if not posts_df.empty and 'likeCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): df_resampled = posts_df.set_index(date_col_posts)['likeCount'].resample('W').sum().reset_index() df_resampled['likeCount'] = pd.to_numeric(df_resampled['likeCount'], errors='coerce') df_summary = df_resampled[[date_col_posts, 'likeCount']].dropna().copy() df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d') df_summary.rename(columns={'likeCount': 'Likes'}, inplace=True) summary_text = f"Likes Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}" else: summary_text = f"Likes data is unavailable for '{plot_label}'." elif plot_id == "clicks_over_time": if not posts_df.empty and 'clickCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): df_resampled = posts_df.set_index(date_col_posts)['clickCount'].resample('W').sum().reset_index() df_resampled['clickCount'] = pd.to_numeric(df_resampled['clickCount'], errors='coerce') df_summary = df_resampled[[date_col_posts, 'clickCount']].dropna().copy() df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d') df_summary.rename(columns={'clickCount': 'Clicks'}, inplace=True) summary_text = f"Clicks Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}" else: summary_text = f"Clicks data is unavailable for '{plot_label}'." elif plot_id == "shares_over_time": if not posts_df.empty and 'shareCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): df_resampled = posts_df.set_index(date_col_posts)['shareCount'].resample('W').sum().reset_index() df_resampled['shareCount'] = pd.to_numeric(df_resampled['shareCount'], errors='coerce') df_summary = df_resampled[[date_col_posts, 'shareCount']].dropna().copy() df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d') df_summary.rename(columns={'shareCount': 'Shares'}, inplace=True) summary_text = f"Shares Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}" elif 'shareCount' not in posts_df.columns and not posts_df.empty : # Check if posts_df is not empty before assuming column is the only issue summary_text = f"Shares data column ('shareCount') not found for '{plot_label}'." else: summary_text = f"Shares data is unavailable for '{plot_label}'." elif plot_id == "comments_over_time": if not posts_df.empty and 'commentCount' in posts_df.columns and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): df_resampled = posts_df.set_index(date_col_posts)['commentCount'].resample('W').sum().reset_index() df_resampled['commentCount'] = pd.to_numeric(df_resampled['commentCount'], errors='coerce') df_summary = df_resampled[[date_col_posts, 'commentCount']].dropna().copy() df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d') df_summary.rename(columns={'commentCount': 'Comments'}, inplace=True) summary_text = f"Comments Over Time (Weekly Sum):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}" else: summary_text = f"Comments data is unavailable for '{plot_label}'." elif plot_id == "comments_sentiment": comment_sentiment_col_posts = "sentiment" if not posts_df.empty and comment_sentiment_col_posts in posts_df.columns: sentiment_counts = posts_df[comment_sentiment_col_posts].value_counts().reset_index() sentiment_counts.columns = ['Sentiment', 'Count'] summary_text = f"Comments Sentiment Breakdown (Posts Data):\n{sentiment_counts.to_string(index=False)}" else: summary_text = f"Comment sentiment data ('{comment_sentiment_col_posts}') is unavailable for '{plot_label}'." elif plot_id == "post_frequency_cs": if not posts_df.empty and date_col_posts in posts_df.columns and not posts_df[date_col_posts].isnull().all(): post_counts_weekly = posts_df.set_index(date_col_posts).resample('W').size().reset_index(name='post_count') post_counts_weekly.rename(columns={date_col_posts: 'Week', 'post_count': 'Posts'}, inplace=True) post_counts_weekly['Week'] = post_counts_weekly['Week'].dt.strftime('%Y-%m-%d (Week of)') summary_text = f"Post Frequency (Weekly):\n{post_counts_weekly.sort_values(by='Week').tail(5).to_string(index=False)}" else: summary_text = f"Post frequency data is unavailable for '{plot_label}'." elif plot_id == "content_format_breakdown_cs": if not posts_df.empty and media_type_col_name in posts_df.columns: format_counts = posts_df[media_type_col_name].value_counts().reset_index() format_counts.columns = ['Format', 'Count'] summary_text = f"Content Format Breakdown:\n{format_counts.nlargest(5, 'Count').to_string(index=False)}" else: summary_text = f"Content format data ('{media_type_col_name}') is unavailable for '{plot_label}'." elif plot_id == "content_topic_breakdown_cs": if not posts_df.empty and eb_labels_col_name in posts_df.columns: try: # Ensure the column is not all NaN before trying to check for lists or explode if posts_df[eb_labels_col_name].notna().any(): if posts_df[eb_labels_col_name].apply(lambda x: isinstance(x, list)).any(): topic_counts = posts_df.explode(eb_labels_col_name)[eb_labels_col_name].value_counts().reset_index() else: topic_counts = posts_df[eb_labels_col_name].value_counts().reset_index() topic_counts.columns = ['Topic', 'Count'] summary_text = f"Content Topic Breakdown (Top 5):\n{topic_counts.nlargest(5, 'Count').to_string(index=False)}" else: summary_text = f"Content topic data ('{eb_labels_col_name}') contains no valid topics for '{plot_label}'." except Exception as e_topic: logging.warning(f"Could not process topic breakdown for '{eb_labels_col_name}': {e_topic}") summary_text = f"Content topic data ('{eb_labels_col_name}') could not be processed for '{plot_label}'." else: summary_text = f"Content topic data ('{eb_labels_col_name}') is unavailable for '{plot_label}'." # --- MENTIONS STATS --- elif plot_id == "mention_analysis_volume": if not mentions_df.empty and date_col_mentions in mentions_df.columns and not mentions_df[date_col_mentions].isnull().all(): mentions_over_time = mentions_df.set_index(date_col_mentions).resample('W').size().reset_index(name='mention_count') mentions_over_time.rename(columns={date_col_mentions: 'Week', 'mention_count': 'Mentions'}, inplace=True) mentions_over_time['Week'] = mentions_over_time['Week'].dt.strftime('%Y-%m-%d (Week of)') if not mentions_over_time.empty: summary_text = f"Mentions Volume (Weekly):\n{mentions_over_time.sort_values(by='Week').tail(5).to_string(index=False)}" else: summary_text = f"No mention activity found for '{plot_label}' in the selected period." else: summary_text = f"Mentions volume data is unavailable for '{plot_label}'." elif plot_id == "mention_analysis_sentiment": if not mentions_df.empty and mentions_sentiment_col in mentions_df.columns: sentiment_counts = mentions_df[mentions_sentiment_col].value_counts().reset_index() sentiment_counts.columns = ['Sentiment', 'Count'] summary_text = f"Mentions Sentiment Breakdown:\n{sentiment_counts.to_string(index=False)}" else: summary_text = f"Mention sentiment data ('{mentions_sentiment_col}') is unavailable for '{plot_label}'." data_summaries[plot_id] = summary_text except KeyError as e: logging.warning(f"KeyError generating summary for {plot_id} ('{plot_label}'): {e}. Using default summary.") data_summaries[plot_id] = f"Data summary generation error for '{plot_label}' (missing column: {e})." except Exception as e: logging.error(f"Error generating summary for {plot_id} ('{plot_label}'): {e}", exc_info=True) data_summaries[plot_id] = f"Error generating data summary for '{plot_label}'." return data_summaries # --- Analytics Tab: Plot Figure Generation Function --- def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date, current_plot_configs): logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}") num_expected_plots = 19 # Ensure this matches the number of plots generated plot_data_summaries_for_chatbot = {} # Initialize dict for chatbot summaries if not token_state_value or not token_state_value.get("token"): message = "❌ Accesso negato. Nessun token. Impossibile generare le analisi." logging.warning(message) placeholder_figs = [create_placeholder_plot(title="Accesso Negato", message="Nessun token.") for _ in range(num_expected_plots)] # For each plot_config, add a default "no data" summary for p_cfg in current_plot_configs: plot_data_summaries_for_chatbot[p_cfg["id"]] = "Accesso negato, nessun dato per il chatbot." return [message] + placeholder_figs + [plot_data_summaries_for_chatbot] try: (filtered_merged_posts_df, filtered_mentions_df, date_filtered_follower_stats_df, # For time-based follower plots raw_follower_stats_df, # For demographic follower plots start_dt_for_msg, end_dt_for_msg) = \ prepare_filtered_analytics_data( token_state_value, date_filter_option, custom_start_date, custom_end_date ) # Generate data summaries for chatbot AFTER data preparation plot_data_summaries_for_chatbot = generate_chatbot_data_summaries( current_plot_configs, # Pass the plot_configs list filtered_merged_posts_df, filtered_mentions_df, date_filtered_follower_stats_df, raw_follower_stats_df, token_state_value ) except Exception as e: error_msg = f"❌ Errore durante la preparazione dei dati per le analisi: {e}" logging.error(error_msg, exc_info=True) placeholder_figs = [create_placeholder_plot(title="Errore Preparazione Dati", message=str(e)) for _ in range(num_expected_plots)] for p_cfg in current_plot_configs: plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore preparazione dati: {e}" return [error_msg] + placeholder_figs + [plot_data_summaries_for_chatbot] date_column_posts = token_state_value.get("config_date_col_posts", "published_at") date_column_mentions = token_state_value.get("config_date_col_mentions", "date") media_type_col_name = token_state_value.get("config_media_type_col", "media_type") eb_labels_col_name = token_state_value.get("config_eb_labels_col", "li_eb_label") plot_figs = [] # Initialize list to hold plot figures plot_titles_for_errors = [p_cfg["label"] for p_cfg in current_plot_configs] try: # Dinamiche dei Follower (2 plots) plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly')) plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly')) # Assuming this uses 'follower_gains_monthly' to calculate rate # Demografia Follower (4 plots) plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Follower per Località")) plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Follower per Ruolo")) plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Follower per Settore")) plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Follower per Anzianità")) # Approfondimenti Performance Post (4 plots) plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) # Ensure 'impressions_sum' or equivalent is used by this func plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) # Engagement Dettagliato Post nel Tempo (4 plots) plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment')) # Make sure 'comment_sentiment' exists # Analisi Strategia Contenuti (3 plots) plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts)) plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name)) plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name)) # Analisi Menzioni (Dettaglio) (2 plots) plot_figs.append(generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions)) plot_figs.append(generate_mention_sentiment_plot(filtered_mentions_df)) # Make sure this function handles empty/malformed df if len(plot_figs) != num_expected_plots: logging.warning(f"Mismatch in generated plots. Expected {num_expected_plots}, got {len(plot_figs)}. This will cause UI update issues.") while len(plot_figs) < num_expected_plots: plot_figs.append(create_placeholder_plot(title="Grafico Non Generato", message="Logica di generazione incompleta.")) message = f"📊 Analisi aggiornate per il periodo: {date_filter_option}" if date_filter_option == "Intervallo Personalizzato": s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Qualsiasi" e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Qualsiasi" message += f" (Da: {s_display} A: {e_display})" final_plot_figs = [] for i, p_fig_candidate in enumerate(plot_figs): if p_fig_candidate is not None and not isinstance(p_fig_candidate, str): # Basic check for a plot object final_plot_figs.append(p_fig_candidate) else: err_title = plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}" logging.warning(f"Plot {err_title} (index {i}) non è una figura valida: {p_fig_candidate}. Uso placeholder.") final_plot_figs.append(create_placeholder_plot(title=f"Errore: {err_title}", message="Impossibile generare figura.")) return [message] + final_plot_figs[:num_expected_plots] + [plot_data_summaries_for_chatbot] except (KeyError, ValueError) as e_plot_data: logging.error(f"Errore dati durante la generazione di un grafico specifico: {e_plot_data}", exc_info=True) error_msg_display = f"Errore dati in un grafico: {str(e_plot_data)[:100]}" num_already_generated = len(plot_figs) for i in range(num_already_generated, num_expected_plots): err_title_fill = plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}" plot_figs.append(create_placeholder_plot(title=f"Errore Dati: {err_title_fill}", message=f"Precedente errore: {str(e_plot_data)[:50]}")) for p_cfg in current_plot_configs: # Ensure summaries dict is populated on error if p_cfg["id"] not in plot_data_summaries_for_chatbot: plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore dati grafico: {e_plot_data}" return [error_msg_display] + plot_figs[:num_expected_plots] + [plot_data_summaries_for_chatbot] except Exception as e_general: error_msg = f"❌ Errore generale durante la generazione dei grafici: {e_general}" logging.error(error_msg, exc_info=True) placeholder_figs_general = [create_placeholder_plot(title=plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}", message=str(e_general)) for i in range(num_expected_plots)] for p_cfg in current_plot_configs: # Ensure summaries dict is populated on error if p_cfg["id"] not in plot_data_summaries_for_chatbot: plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore generale grafici: {e_general}" return [error_msg] + placeholder_figs_general + [plot_data_summaries_for_chatbot] # --- Gradio UI Blocks --- with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="LinkedIn Organization Dashboard") as app: token_state = gr.State(value={ "token": None, "client_id": None, "org_urn": None, "bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(), "bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(), "fetch_count_for_api": 0, "url_user_token_temp_storage": None, "config_date_col_posts": "published_at", "config_date_col_mentions": "date", "config_date_col_followers": "date", "config_media_type_col": "media_type", "config_eb_labels_col": "li_eb_label" }) chat_histories_st = gr.State({}) current_chat_plot_id_st = gr.State(None) plot_data_for_chatbot_st = gr.State({}) # NEW: Store data summaries for chatbot gr.Markdown("# 🚀 LinkedIn Organization Dashboard") url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False) status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...") org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False) app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False) def initial_load_sequence(url_token, org_urn_val, current_state): status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state) dashboard_content = display_main_dashboard(new_state) return status_msg, new_state, btn_update, dashboard_content with gr.Tabs() as tabs: with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"): gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.") sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False) sync_status_html_output = gr.HTML("
Stato sincronizzazione...
") dashboard_display_html = gr.HTML("Caricamento dashboard...
") org_urn_display.change( fn=initial_load_sequence, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn, dashboard_display_html], show_progress="full" ) with gr.TabItem("2️⃣ Analisi", id="tab_analytics"): gr.Markdown("## 📈 Analisi Performance LinkedIn") gr.Markdown("Seleziona un intervallo di date. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.") analytics_status_md = gr.Markdown("Stato analisi...") with gr.Row(): date_filter_selector = gr.Radio( ["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"], label="Seleziona Intervallo Date", value="Sempre", scale=3 ) with gr.Column(scale=2): custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime") # Use gr.DateTime custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime") # Use gr.DateTime apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Analisi", variant="primary") def toggle_custom_date_pickers(selection): is_custom = selection == "Intervallo Personalizzato" return gr.update(visible=is_custom), gr.update(visible=is_custom) date_filter_selector.change( fn=toggle_custom_date_pickers, inputs=[date_filter_selector], outputs=[custom_start_date_picker, custom_end_date_picker] ) plot_configs = [ {"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"}, {"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"}, {"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"}, {"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"}, {"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"}, {"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"}, {"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"}, {"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"}, {"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"}, {"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"}, {"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"}, {"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"}, {"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"}, {"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"}, {"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"}, {"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"}, {"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"}, {"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"}, {"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"} ] assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi." active_panel_action_state = gr.State(None) explored_plot_id_state = gr.State(None) plot_ui_objects = {} with gr.Row(equal_height=False): with gr.Column(scale=8) as plots_area_col: plot_ui_objects = build_analytics_tab_plot_area(plot_configs) with gr.Column(scale=4, visible=False) as global_actions_column_ui: gr.Markdown("### 💡 Azioni Contestuali Grafico") insights_chatbot_ui = gr.Chatbot( label="Chat Insights", type="messages", height=450, bubble_full_width=False, visible=False, show_label=False, placeholder="L'analisi AI del grafico apparirà qui. Fai domande di approfondimento!" ) insights_chat_input_ui = gr.Textbox( label="La tua domanda:", placeholder="Chiedi all'AI riguardo a questo grafico...", lines=2, visible=False, show_label=False ) with gr.Row(visible=False) as insights_suggestions_row_ui: insights_suggestion_1_btn = gr.Button(value="Suggerimento 1", size="sm", min_width=50) insights_suggestion_2_btn = gr.Button(value="Suggerimento 2", size="sm", min_width=50) insights_suggestion_3_btn = gr.Button(value="Suggerimento 3", size="sm", min_width=50) formula_display_markdown_ui = gr.Markdown( "I dettagli sulla formula/metodologia appariranno qui.", visible=False ) async def handle_panel_action( plot_id_clicked: str, action_type: str, current_active_action_from_state: dict, current_chat_histories: dict, current_chat_plot_id: str, current_plot_data_for_chatbot: dict # NEW: data summaries ): logging.info(f"Azione '{action_type}' per grafico: {plot_id_clicked}. Attualmente attivo: {current_active_action_from_state}") clicked_plot_config = next((p for p in plot_configs if p["id"] == plot_id_clicked), None) if not clicked_plot_config: logging.error(f"Configurazione non trovata per plot_id {plot_id_clicked}") num_button_updates = 2 * len(plot_configs) # insights, formula buttons error_updates = [gr.update(visible=False)] * 7 # action_col, chatbot, input, suggestions_row, 3x sugg_btn error_updates.append(gr.update(visible=False, value="")) # formula_md (visibility and value) error_updates.extend([current_active_action_from_state, current_chat_plot_id, current_chat_histories]) error_updates.extend([gr.update()] * num_button_updates) return error_updates clicked_plot_label = clicked_plot_config["label"] hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type} is_toggling_off = current_active_action_from_state == hypothetical_new_active_state new_active_action_state_to_set = None action_col_visible_update = gr.update(visible=True) insights_chatbot_visible_update = gr.update(visible=False) insights_chat_input_visible_update = gr.update(visible=False) insights_suggestions_row_visible_update = gr.update(visible=False) formula_display_visible_update = gr.update(visible=False) chatbot_content_update = gr.update() # No change by default suggestion_1_update = gr.update() suggestion_2_update = gr.update() suggestion_3_update = gr.update() new_current_chat_plot_id = current_chat_plot_id updated_chat_histories = current_chat_histories formula_content_update = gr.update() if is_toggling_off: new_active_action_state_to_set = None action_col_visible_update = gr.update(visible=False) new_current_chat_plot_id = None logging.info(f"Chiusura pannello {action_type} per {plot_id_clicked}") else: new_active_action_state_to_set = hypothetical_new_active_state if action_type == "insights": insights_chatbot_visible_update = gr.update(visible=True) insights_chat_input_visible_update = gr.update(visible=True) insights_suggestions_row_visible_update = gr.update(visible=True) new_current_chat_plot_id = plot_id_clicked chat_history_for_this_plot = current_chat_histories.get(plot_id_clicked, []) plot_specific_data_summary = current_plot_data_for_chatbot.get(plot_id_clicked, f"Nessun sommario dati specifico disponibile per '{clicked_plot_label}'.") if not chat_history_for_this_plot: initial_llm_prompt, suggestions = get_initial_insight_prompt_and_suggestions( plot_id_clicked, clicked_plot_label, plot_specific_data_summary ) # History for LLM's first turn: the system's prompt as a user message history_for_llm_first_turn = [{"role": "user", "content": initial_llm_prompt}] logging.info(f"Generating initial LLM insight for {plot_id_clicked}...") initial_bot_response_text = await generate_llm_response( user_message=initial_llm_prompt, # For context/logging in handler plot_id=plot_id_clicked, plot_label=clicked_plot_label, chat_history_for_plot=history_for_llm_first_turn, plot_data_summary=plot_specific_data_summary ) logging.info(f"LLM initial insight received for {plot_id_clicked}.") # History for Gradio display starts with the assistant's response chat_history_for_this_plot = [{"role": "assistant", "content": initial_bot_response_text}] updated_chat_histories = current_chat_histories.copy() updated_chat_histories[plot_id_clicked] = chat_history_for_this_plot else: # History exists, get fresh suggestions _, suggestions = get_initial_insight_prompt_and_suggestions( plot_id_clicked, clicked_plot_label, plot_specific_data_summary ) chatbot_content_update = gr.update(value=chat_history_for_this_plot) suggestion_1_update = gr.update(value=suggestions[0]) suggestion_2_update = gr.update(value=suggestions[1]) suggestion_3_update = gr.update(value=suggestions[2]) logging.info(f"Apertura pannello CHAT per {plot_id_clicked} ('{clicked_plot_label}')") elif action_type == "formula": formula_display_visible_update = gr.update(visible=True) formula_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked) formula_text = f"**Formula/Metodologia per: {clicked_plot_label}**\n\nID Grafico: `{plot_id_clicked}`.\n\n" if formula_key and formula_key in PLOT_FORMULAS: formula_data = PLOT_FORMULAS[formula_key] formula_text += f"### {formula_data['title']}\n\n" formula_text += f"**Descrizione:**\n{formula_data['description']}\n\n" formula_text += "**Come viene calcolato:**\n" for step in formula_data['calculation_steps']: formula_text += f"- {step}\n" else: formula_text += "(Nessuna informazione dettagliata sulla formula trovata per questo ID grafico in `formulas.py`)" formula_content_update = gr.update(value=formula_text) new_current_chat_plot_id = None logging.info(f"Apertura pannello FORMULA per {plot_id_clicked} (mappato a {formula_key})") all_button_icon_updates = [] for cfg_item in plot_configs: p_id_iter = cfg_item["id"] # Update insights button icon if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "insights"}: all_button_icon_updates.append(gr.update(value=ACTIVE_ICON)) else: all_button_icon_updates.append(gr.update(value=BOMB_ICON)) # Update formula button icon if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "formula"}: all_button_icon_updates.append(gr.update(value=ACTIVE_ICON)) else: all_button_icon_updates.append(gr.update(value=FORMULA_ICON)) final_updates = [ action_col_visible_update, insights_chatbot_visible_update, chatbot_content_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update, suggestion_1_update, suggestion_2_update, suggestion_3_update, formula_display_visible_update, formula_content_update, new_active_action_state_to_set, new_current_chat_plot_id, updated_chat_histories ] + all_button_icon_updates return final_updates async def handle_chat_message_submission( user_message: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict # NEW: data summaries ): if not current_plot_id or not user_message.strip(): history_for_plot = chat_histories.get(current_plot_id, []) # Yield current state if no action needed yield history_for_plot, gr.update(value=""), chat_histories # Clear input, return current history return plot_config = next((p for p in plot_configs if p["id"] == current_plot_id), None) plot_label = plot_config["label"] if plot_config else "Grafico Selezionato" # Retrieve the specific data summary for the current plot plot_specific_data_summary = current_plot_data_for_chatbot.get(current_plot_id, f"Nessun sommario dati specifico disponibile per '{plot_label}'.") history_for_plot = chat_histories.get(current_plot_id, []).copy() history_for_plot.append({"role": "user", "content": user_message}) # Update UI immediately with user message yield history_for_plot, gr.update(value=""), chat_histories # Clear input # Pass the data summary to the LLM along with the history bot_response_text = await generate_llm_response( user_message, current_plot_id, plot_label, history_for_plot, # This history now includes the user message plot_specific_data_summary # Explicitly pass for this turn if needed by LLM handler logic ) history_for_plot.append({"role": "assistant", "content": bot_response_text}) updated_chat_histories = chat_histories.copy() updated_chat_histories[current_plot_id] = history_for_plot yield history_for_plot, "", updated_chat_histories async def handle_suggested_question_click( suggestion_text: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict # NEW: data summaries ): if not current_plot_id or not suggestion_text.strip(): history_for_plot = chat_histories.get(current_plot_id, []) yield history_for_plot, gr.update(value=""), chat_histories return # This is essentially the same as submitting a message, so reuse logic # The suggestion_text becomes the user_message async for update in handle_chat_message_submission( suggestion_text, current_plot_id, chat_histories, current_plot_data_for_chatbot ): yield update def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state): logging.info(f"Click su Esplora per: {plot_id_clicked}. Attualmente esplorato da stato: {current_explored_plot_id_from_state}") if not plot_ui_objects: logging.error("plot_ui_objects non popolato durante handle_explore_click.") updates_for_missing_ui = [current_explored_plot_id_from_state] for _ in plot_configs: # panel_component, explore_button updates_for_missing_ui.extend([gr.update(), gr.update()]) return updates_for_missing_ui new_explored_id_to_set = None is_toggling_off = (plot_id_clicked == current_explored_plot_id_from_state) if is_toggling_off: new_explored_id_to_set = None logging.info(f"Interruzione esplorazione grafico: {plot_id_clicked}") else: new_explored_id_to_set = plot_id_clicked logging.info(f"Esplorazione grafico: {plot_id_clicked}") panel_and_button_updates = [] for cfg in plot_configs: p_id = cfg["id"] if p_id in plot_ui_objects: panel_visible = not new_explored_id_to_set or (p_id == new_explored_id_to_set) panel_and_button_updates.append(gr.update(visible=panel_visible)) if p_id == new_explored_id_to_set: panel_and_button_updates.append(gr.update(value=ACTIVE_ICON)) else: panel_and_button_updates.append(gr.update(value=EXPLORE_ICON)) else: panel_and_button_updates.extend([gr.update(), gr.update()]) final_updates = [new_explored_id_to_set] + panel_and_button_updates return final_updates # Outputs for panel actions action_panel_outputs_list = [ global_actions_column_ui, insights_chatbot_ui, insights_chatbot_ui, # Target chatbot UI for visibility and value insights_chat_input_ui, insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn, formula_display_markdown_ui, formula_display_markdown_ui, # Target markdown for visibility and value active_panel_action_state, current_chat_plot_id_st, chat_histories_st ] for cfg_item_action in plot_configs: pid_action = cfg_item_action["id"] if pid_action in plot_ui_objects: action_panel_outputs_list.append(plot_ui_objects[pid_action]["bomb_button"]) action_panel_outputs_list.append(plot_ui_objects[pid_action]["formula_button"]) else: action_panel_outputs_list.extend([gr.update(), gr.update()]) # Use gr.update() as placeholder # Outputs for explore actions explore_buttons_outputs_list = [explored_plot_id_state] for cfg_item_explore in plot_configs: pid_explore = cfg_item_explore["id"] if pid_explore in plot_ui_objects: explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["panel_component"]) explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["explore_button"]) else: explore_buttons_outputs_list.extend([gr.update(), gr.update()]) # Inputs for panel actions action_click_inputs = [ active_panel_action_state, chat_histories_st, current_chat_plot_id_st, plot_data_for_chatbot_st # NEW: pass data summaries state ] # Inputs for explore actions explore_click_inputs = [explored_plot_id_state] def create_panel_action_handler(p_id, action_type_str): async def _handler(current_active_val, current_chats_val, current_chat_pid, current_plot_data_summaries): # Add summaries logging.debug(f"Entering _handler for plot_id: {p_id}, action: {action_type_str}") result = await handle_panel_action(p_id, action_type_str, current_active_val, current_chats_val, current_chat_pid, current_plot_data_summaries) # Pass summaries logging.debug(f"_handler for plot_id: {p_id}, action: {action_type_str} completed.") return result return _handler for config_item in plot_configs: plot_id = config_item["id"] if plot_id in plot_ui_objects: ui_obj = plot_ui_objects[plot_id] ui_obj["bomb_button"].click( fn=create_panel_action_handler(plot_id, "insights"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_insights_{plot_id}" ) ui_obj["formula_button"].click( fn=create_panel_action_handler(plot_id, "formula"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_formula_{plot_id}" ) ui_obj["explore_button"].click( fn=lambda current_explored_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val), inputs=explore_click_inputs, outputs=explore_buttons_outputs_list, api_name=f"action_explore_{plot_id}" ) else: logging.warning(f"Oggetto UI per plot_id '{plot_id}' non trovato durante il tentativo di associare i gestori di click.") chat_submission_outputs = [insights_chatbot_ui, insights_chat_input_ui, chat_histories_st] chat_submission_inputs = [insights_chat_input_ui, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st] # Add data summaries state insights_chat_input_ui.submit( fn=handle_chat_message_submission, inputs=chat_submission_inputs, outputs=chat_submission_outputs, api_name="submit_chat_message" ) suggestion_click_inputs = [current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st] # Add data summaries state insights_suggestion_1_btn.click( fn=handle_suggested_question_click, inputs=[insights_suggestion_1_btn] + suggestion_click_inputs, # Pass button value as first arg outputs=chat_submission_outputs, api_name="click_suggestion_1" ) insights_suggestion_2_btn.click( fn=handle_suggested_question_click, inputs=[insights_suggestion_2_btn] + suggestion_click_inputs, outputs=chat_submission_outputs, api_name="click_suggestion_2" ) insights_suggestion_3_btn.click( fn=handle_suggested_question_click, inputs=[insights_suggestion_3_btn] + suggestion_click_inputs, outputs=chat_submission_outputs, api_name="click_suggestion_3" ) def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val, current_chat_histories): logging.info("Aggiornamento di tutti gli elementi UI delle analisi e reset delle azioni/chat.") # Pass plot_configs to the update function so it can be used by generate_chatbot_data_summaries plot_generation_results = update_analytics_plots_figures( current_token_state, date_filter_val, custom_start_val, custom_end_val, plot_configs ) status_message_update = plot_generation_results[0] generated_plot_figures = plot_generation_results[1:-1] # All items except first (status) and last (summaries) new_plot_data_summaries = plot_generation_results[-1] # Last item is the summaries dict all_updates = [status_message_update] for i in range(len(plot_configs)): if i < len(generated_plot_figures): all_updates.append(generated_plot_figures[i]) else: all_updates.append(create_placeholder_plot("Errore Figura", f"Figura mancante per grafico {plot_configs[i]['id']}")) all_updates.extend([ gr.update(visible=False), # global_actions_column_ui gr.update(value=[], visible=False), # insights_chatbot_ui (value & visibility) gr.update(value="", visible=False), # insights_chat_input_ui (value & visibility) gr.update(visible=False), # insights_suggestions_row_ui gr.update(value="Suggerimento 1"), # insights_suggestion_1_btn (reset value, visibility handled by row) gr.update(value="Suggerimento 2"), # insights_suggestion_2_btn gr.update(value="Suggerimento 3"), # insights_suggestion_3_btn gr.update(value="I dettagli sulla formula/metodologia appariranno qui.", visible=False), # formula_display_markdown_ui None, # active_panel_action_state None, # current_chat_plot_id_st {}, # chat_histories_st (reset chat histories on filter change) new_plot_data_summaries # NEW: plot_data_for_chatbot_st ]) for cfg in plot_configs: pid = cfg["id"] if pid in plot_ui_objects: all_updates.append(gr.update(value=BOMB_ICON)) all_updates.append(gr.update(value=FORMULA_ICON)) all_updates.append(gr.update(value=EXPLORE_ICON)) all_updates.append(gr.update(visible=True)) # panel_component visibility else: all_updates.extend([gr.update(), gr.update(), gr.update(), gr.update()]) all_updates.append(None) # explored_plot_id_state logging.info(f"Preparati {len(all_updates)} aggiornamenti per il refresh delle analisi.") return all_updates apply_filter_and_sync_outputs_list = [analytics_status_md] for config_item_filter_sync in plot_configs: pid_filter_sync = config_item_filter_sync["id"] if pid_filter_sync in plot_ui_objects and "plot_component" in plot_ui_objects[pid_filter_sync]: apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync]["plot_component"]) else: apply_filter_and_sync_outputs_list.append(gr.update()) apply_filter_and_sync_outputs_list.extend([ global_actions_column_ui, # Reset visibility insights_chatbot_ui, # Reset content & visibility insights_chat_input_ui, # Reset content & visibility insights_suggestions_row_ui, # Reset visibility insights_suggestion_1_btn, # Reset text & visibility insights_suggestion_2_btn, insights_suggestion_3_btn, formula_display_markdown_ui, # Reset content & visibility active_panel_action_state, # Reset state current_chat_plot_id_st, # Reset state chat_histories_st, # Preserve or reset state (resetting via refresh_all_analytics_ui_elements) plot_data_for_chatbot_st # NEW: Update this state ]) for cfg_filter_sync_btns in plot_configs: pid_filter_sync_btns = cfg_filter_sync_btns["id"] if pid_filter_sync_btns in plot_ui_objects: apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["bomb_button"]) apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["formula_button"]) apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["explore_button"]) apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["panel_component"]) else: apply_filter_and_sync_outputs_list.extend([gr.update(), gr.update(), gr.update(), gr.update()]) apply_filter_and_sync_outputs_list.append(explored_plot_id_state) # Reset state logging.info(f"Output totali definiti per apply_filter/sync: {len(apply_filter_and_sync_outputs_list)}") apply_filter_btn.click( fn=refresh_all_analytics_ui_elements, inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st], outputs=apply_filter_and_sync_outputs_list, show_progress="full" ) with gr.TabItem("3️⃣ Menzioni", id="tab_mentions"): refresh_mentions_display_btn = gr.Button("🔄 Aggiorna Visualizzazione Menzioni", variant="secondary") mentions_html = gr.HTML("Dati menzioni...") mentions_sentiment_dist_plot = gr.Plot(label="Distribuzione Sentiment Menzioni") refresh_mentions_display_btn.click( fn=run_mentions_tab_display, inputs=[token_state], outputs=[mentions_html, mentions_sentiment_dist_plot], show_progress="full" ) with gr.TabItem("4️⃣ Statistiche Follower", id="tab_follower_stats"): refresh_follower_stats_btn = gr.Button("🔄 Aggiorna Visualizzazione Statistiche Follower", variant="secondary") follower_stats_html = gr.HTML("Statistiche follower...") with gr.Row(): fs_plot_monthly_gains = gr.Plot(label="Guadagni Mensili Follower") with gr.Row(): fs_plot_seniority = gr.Plot(label="Follower per Anzianità (Top 10 Organici)") fs_plot_industry = gr.Plot(label="Follower per Settore (Top 10 Organici)") refresh_follower_stats_btn.click( fn=run_follower_stats_tab_display, inputs=[token_state], outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry], show_progress="full" ) sync_event_part1 = sync_data_btn.click( fn=sync_all_linkedin_data_orchestrator, inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full" ) sync_event_part2 = sync_event_part1.then( fn=process_and_store_bubble_token, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn], show_progress=False ) sync_event_part3 = sync_event_part2.then( fn=display_main_dashboard, inputs=[token_state], outputs=[dashboard_display_html], show_progress=False ) sync_event_final = sync_event_part3.then( fn=refresh_all_analytics_ui_elements, # This will now also update chatbot data summaries inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st], outputs=apply_filter_and_sync_outputs_list, show_progress="full" ) if __name__ == "__main__": if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"ATTENZIONE: Variabile d'ambiente '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.") if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \ not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \ not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR): logging.warning("ATTENZIONE: Variabili d'ambiente Bubble non completamente impostate.") try: logging.info(f"Versione Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}") except ImportError: logging.warning("Matplotlib non trovato direttamente, ma potrebbe essere usato dai generatori di grafici.") app.launch(server_name="0.0.0.0", server_port=7860, debug=True)