import gradio as gr import pandas as pd import os import logging import matplotlib matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio import matplotlib.pyplot as plt import time # For profiling if needed # --- Module Imports --- from gradio_utils import get_url_user_token # Functions from newly created/refactored modules from config import ( LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR ) from state_manager import process_and_store_bubble_token from sync_logic import sync_all_linkedin_data_orchestrator from ui_generators import ( display_main_dashboard, run_mentions_tab_display, run_follower_stats_tab_display, build_analytics_tab_plot_area, # Import the updated UI builder BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON # Import icons ) # Corrected import for analytics_data_processing from analytics_data_processing import prepare_filtered_analytics_data from analytics_plot_generator import ( generate_posts_activity_plot, generate_engagement_type_plot, generate_mentions_activity_plot, generate_mention_sentiment_plot, generate_followers_count_over_time_plot, generate_followers_growth_rate_plot, generate_followers_by_demographics_plot, generate_engagement_rate_over_time_plot, generate_reach_over_time_plot, generate_impressions_over_time_plot, create_placeholder_plot, generate_likes_over_time_plot, generate_clicks_over_time_plot, generate_shares_over_time_plot, generate_comments_over_time_plot, generate_comments_sentiment_breakdown_plot, generate_post_frequency_plot, generate_content_format_breakdown_plot, generate_content_topic_breakdown_plot ) # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s') # --- Analytics Tab: Plot Figure Generation Function --- def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date): logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}") num_expected_plots = 23 # This should match len(plot_configs) if not token_state_value or not token_state_value.get("token"): message = "❌ Access denied. No token. Cannot generate analytics." logging.warning(message) placeholder_figs = [create_placeholder_plot(title="Access Denied", message="No token.") for _ in range(num_expected_plots)] return [message] + placeholder_figs try: # Optional: Start profiling data preparation # data_prep_start_time = time.time() (filtered_merged_posts_df, filtered_mentions_df, date_filtered_follower_stats_df, raw_follower_stats_df, start_dt_for_msg, end_dt_for_msg) = \ prepare_filtered_analytics_data( token_state_value, date_filter_option, custom_start_date, custom_end_date ) # logging.info(f"Data preparation took {time.time() - data_prep_start_time:.2f}s") except Exception as e: error_msg = f"❌ Error preparing analytics data: {e}" logging.error(error_msg, exc_info=True) placeholder_figs = [create_placeholder_plot(title="Data Preparation Error", message=str(e)) for _ in range(num_expected_plots)] return [error_msg] + placeholder_figs date_column_posts = token_state_value.get("config_date_col_posts", "published_at") date_column_mentions = token_state_value.get("config_date_col_mentions", "date") media_type_col_name = token_state_value.get("config_media_type_col", "media_type") eb_labels_col_name = token_state_value.get("config_eb_labels_col", "eb_labels") plot_figs = [] # Optional: For detailed profiling of each plot # individual_plot_times = {} # total_plot_gen_start_time = time.time() try: # Example for profiling one plot: # plot_name = "posts_activity" # plot_start_time = time.time() plot_figs.append(generate_posts_activity_plot(filtered_merged_posts_df, date_column=date_column_posts)) # individual_plot_times[plot_name] = time.time() - plot_start_time # logging.info(f"Generated {plot_name} in {individual_plot_times[plot_name]:.2f}s") plot_figs.append(generate_engagement_type_plot(filtered_merged_posts_df)) fig_mentions_activity_shared = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions) fig_mention_sentiment_shared = generate_mention_sentiment_plot(filtered_mentions_df) plot_figs.append(fig_mentions_activity_shared) plot_figs.append(fig_mention_sentiment_shared) plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly')) plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly')) plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Followers by Location")) plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Followers by Role")) plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Followers by Industry")) plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Followers by Seniority")) plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) # Assuming this is intended, though label says "Clicks" plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment')) plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts)) plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name)) plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name)) plot_figs.append(fig_mentions_activity_shared) # Re-adding shared plot for "Mention Analysis (Detailed)" plot_figs.append(fig_mention_sentiment_shared) # Re-adding shared plot for "Mention Analysis (Detailed)" # logging.info(f"All plots generated in {time.time() - total_plot_gen_start_time:.2f}s") # logging.info(f"Individual plot generation times: {individual_plot_times}") message = f"📊 Analytics updated for period: {date_filter_option}" if date_filter_option == "Custom Range": s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any" e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any" message += f" (From: {s_display} To: {e_display})" final_plot_figs = [] for i, p_fig in enumerate(plot_figs): if p_fig is not None and not isinstance(p_fig, str): # Check if it's a Matplotlib figure final_plot_figs.append(p_fig) else: logging.warning(f"Plot figure generation failed or returned unexpected type for slot {i}, using placeholder. Figure: {p_fig}") final_plot_figs.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot figure.")) while len(final_plot_figs) < num_expected_plots: logging.warning(f"Padding missing plot figure. Expected {num_expected_plots}, got {len(final_plot_figs)}.") final_plot_figs.append(create_placeholder_plot(title="Missing Plot", message="Plot figure could not be generated.")) return [message] + final_plot_figs[:num_expected_plots] except Exception as e: error_msg = f"❌ Error generating analytics plot figures: {e}" logging.error(error_msg, exc_info=True) placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)] return [error_msg] + placeholder_figs # --- Gradio UI Blocks --- with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="LinkedIn Organization Dashboard") as app: token_state = gr.State(value={ "token": None, "client_id": None, "org_urn": None, "bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(), "bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(), "fetch_count_for_api": 0, "url_user_token_temp_storage": None, "config_date_col_posts": "published_at", "config_date_col_mentions": "date", "config_date_col_followers": "date", "config_media_type_col": "media_type", "config_eb_labels_col": "eb_labels" }) gr.Markdown("# 🚀 LinkedIn Organization Dashboard") url_user_token_display = gr.Textbox(label="User Token (Hidden)", interactive=False, visible=False) status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...") org_urn_display = gr.Textbox(label="Organization URN (Hidden)", interactive=False, visible=False) app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False) def initial_load_sequence(url_token, org_urn_val, current_state): status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state) dashboard_content = display_main_dashboard(new_state) return status_msg, new_state, btn_update, dashboard_content with gr.Tabs() as tabs: with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"): gr.Markdown("System checks for existing data from Bubble. 'Sync' activates if new data is needed.") sync_data_btn = gr.Button("🔄 Sync LinkedIn Data", variant="primary", visible=False, interactive=False) sync_status_html_output = gr.HTML("
Sync status...
") dashboard_display_html = gr.HTML("Dashboard loading...
") org_urn_display.change( fn=initial_load_sequence, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn, dashboard_display_html], show_progress="full" ) with gr.TabItem("2️⃣ Analytics", id="tab_analytics"): gr.Markdown("## 📈 LinkedIn Performance Analytics") gr.Markdown("Select a date range. Click buttons for actions.") analytics_status_md = gr.Markdown("Analytics status...") with gr.Row(): date_filter_selector = gr.Radio( ["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"], label="Select Date Range", value="Last 30 Days", scale=3 ) with gr.Column(scale=2): custom_start_date_picker = gr.DateTime(label="Start Date", visible=False, include_time=False, type="datetime") # type="date" might be better if time not used custom_end_date_picker = gr.DateTime(label="End Date", visible=False, include_time=False, type="datetime") # type="date" apply_filter_btn = gr.Button("🔍 Apply Filter & Refresh Analytics", variant="primary") def toggle_custom_date_pickers(selection): is_custom = selection == "Custom Range" return gr.update(visible=is_custom), gr.update(visible=is_custom) date_filter_selector.change( fn=toggle_custom_date_pickers, inputs=[date_filter_selector], outputs=[custom_start_date_picker, custom_end_date_picker] ) plot_configs = [ {"label": "Posts Activity Over Time", "id": "posts_activity", "section": "Posts & Engagement Overview"}, {"label": "Post Engagement Types", "id": "engagement_type", "section": "Posts & Engagement Overview"}, {"label": "Mentions Activity Over Time", "id": "mentions_activity", "section": "Mentions Overview"}, {"label": "Mention Sentiment Distribution", "id": "mention_sentiment", "section": "Mentions Overview"}, {"label": "Followers Count Over Time", "id": "followers_count", "section": "Follower Dynamics"}, {"label": "Followers Growth Rate", "id": "followers_growth_rate", "section": "Follower Dynamics"}, {"label": "Followers by Location", "id": "followers_by_location", "section": "Follower Demographics"}, {"label": "Followers by Role (Function)", "id": "followers_by_role", "section": "Follower Demographics"}, {"label": "Followers by Industry", "id": "followers_by_industry", "section": "Follower Demographics"}, {"label": "Followers by Seniority", "id": "followers_by_seniority", "section": "Follower Demographics"}, {"label": "Engagement Rate Over Time", "id": "engagement_rate", "section": "Post Performance Insights"}, {"label": "Reach Over Time", "id": "reach_over_time", "section": "Post Performance Insights"}, # Corrected label based on function {"label": "Impressions Over Time", "id": "impressions_over_time", "section": "Post Performance Insights"}, {"label": "Reactions (Likes) Over Time", "id": "likes_over_time", "section": "Post Performance Insights"}, {"label": "Clicks Over Time", "id": "clicks_over_time", "section": "Detailed Post Engagement Over Time"}, {"label": "Shares Over Time", "id": "shares_over_time", "section": "Detailed Post Engagement Over Time"}, {"label": "Comments Over Time", "id": "comments_over_time", "section": "Detailed Post Engagement Over Time"}, {"label": "Breakdown of Comments by Sentiment", "id": "comments_sentiment", "section": "Detailed Post Engagement Over Time"}, {"label": "Post Frequency", "id": "post_frequency_cs", "section": "Content Strategy Analysis"}, {"label": "Breakdown of Content by Format", "id": "content_format_breakdown_cs", "section": "Content Strategy Analysis"}, {"label": "Breakdown of Content by Topics", "id": "content_topic_breakdown_cs", "section": "Content Strategy Analysis"}, {"label": "Mentions Volume Over Time (Detailed)", "id": "mention_analysis_volume", "section": "Mention Analysis (Detailed)"}, {"label": "Breakdown of Mentions by Sentiment (Detailed)", "id": "mention_analysis_sentiment", "section": "Mention Analysis (Detailed)"} ] assert len(plot_configs) == 23, "Mismatch in plot_configs and expected plots." active_panel_action_state = gr.State(None) # Stores {"plot_id": "action_type"} e.g. {"posts_activity": "insights"} or None explored_plot_id_state = gr.State(None) # Stores plot_id of the currently explored plot, or None plot_ui_objects = {} # Will be populated by build_analytics_tab_plot_area with gr.Row(equal_height=False): with gr.Column(scale=8) as plots_area_col: # Call the UI builder function and store its results plot_ui_objects = build_analytics_tab_plot_area(plot_configs) with gr.Column(scale=4, visible=False) as global_actions_column_ui: gr.Markdown("### 💡 Generated Content") global_actions_markdown_ui = gr.Markdown("Click a button (💣, ƒ) on a plot to see content here.") # --- Event Handler for Insights and Formula Buttons --- def handle_panel_action(plot_id_clicked, action_type, current_active_action_from_state, current_token_state_val): logging.info(f"Action '{action_type}' for plot: {plot_id_clicked}. Current active from state: {current_active_action_from_state}") # This check is crucial: plot_ui_objects must be populated before this handler is effectively used. # It should be, as this handler is tied to buttons created by build_analytics_tab_plot_area. if not plot_ui_objects or plot_id_clicked not in plot_ui_objects: logging.error(f"plot_ui_objects not populated or plot_id {plot_id_clicked} not found during handle_panel_action.") # Return updates that don't crash, perhaps just an error message or no-ops. # Number of outputs for this handler: 3 (global_col_vis, global_md_val, active_state_val) + 2 * len(plot_configs) (buttons) error_updates = [gr.update(visible=False), "Error: UI components not ready.", None] + [gr.update() for _ in range(2 * len(plot_configs))] return error_updates clicked_plot_label = plot_ui_objects.get(plot_id_clicked, {}).get("label", "Selected Plot") hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type} is_toggling_off = current_active_action_from_state == hypothetical_new_active_state new_active_action_state_to_set = None content_text = "" action_col_visible = False if is_toggling_off: new_active_action_state_to_set = None # Closing the panel content_text = f"{action_type.capitalize()} panel for '{clicked_plot_label}' closed." action_col_visible = False logging.info(f"Closing {action_type} panel for {plot_id_clicked}") else: # Activating or switching new_active_action_state_to_set = hypothetical_new_active_state action_col_visible = True if action_type == "insights": # TODO: Implement actual insight generation using current_token_state_val if needed content_text = f"**Insights for: {clicked_plot_label}**\n\nPlot ID: `{plot_id_clicked}`.\n(AI insights generation placeholder)" elif action_type == "formula": # TODO: Implement actual formula display content_text = f"**Formula/Methodology for: {clicked_plot_label}**\n\nPlot ID: `{plot_id_clicked}`.\n(Methodology details placeholder)" logging.info(f"Opening/switching to {action_type} panel for {plot_id_clicked}") # Prepare updates for ALL buttons based on new_active_action_state_to_set all_button_updates = [] for cfg_item in plot_configs: p_id_iter = cfg_item["id"] if p_id_iter in plot_ui_objects: # Bomb button state for this p_id_iter if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "insights"}: all_button_updates.append(gr.update(value=ACTIVE_ICON)) else: all_button_updates.append(gr.update(value=BOMB_ICON)) # Formula button state for this p_id_iter if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "formula"}: all_button_updates.append(gr.update(value=ACTIVE_ICON)) else: all_button_updates.append(gr.update(value=FORMULA_ICON)) else: # Should not happen if plot_ui_objects is complete all_button_updates.extend([gr.update(), gr.update()]) final_updates = [ gr.update(visible=action_col_visible), gr.update(value=content_text), new_active_action_state_to_set # This is the new value for active_panel_action_state ] + all_button_updates return final_updates # --- Event Handler for Explore Button --- def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state): logging.info(f"Explore clicked for: {plot_id_clicked}. Currently explored from state: {current_explored_plot_id_from_state}") if not plot_ui_objects: # Safeguard logging.error("plot_ui_objects not populated during handle_explore_click.") return [current_explored_plot_id_from_state] + [gr.update() for _ in range(2 * len(plot_configs))] new_explored_id_to_set = None is_toggling_off = (plot_id_clicked == current_explored_plot_id_from_state) if is_toggling_off: new_explored_id_to_set = None # Un-exploring logging.info(f"Un-exploring plot: {plot_id_clicked}") else: new_explored_id_to_set = plot_id_clicked # Exploring this plot logging.info(f"Exploring plot: {plot_id_clicked}") # Prepare updates for panel visibility and explore button icons panel_and_button_updates = [] for cfg in plot_configs: p_id = cfg["id"] if p_id in plot_ui_objects: panel_visible = not new_explored_id_to_set or (p_id == new_explored_id_to_set) # Special handling for paired plots in the same section when one is explored # This logic might need refinement based on how build_analytics_tab_plot_area structures rows # For now, the basic logic is: if new_explored_id_to_set is active, only that panel is visible. # If new_explored_id_to_set is None, all panels are visible. panel_and_button_updates.append(gr.update(visible=panel_visible)) # Panel visibility update # Explore button icon update if p_id == new_explored_id_to_set: # If this plot is the one being explored (or just became explored) panel_and_button_updates.append(gr.update(value=ACTIVE_ICON)) else: # All other plots, or if un-exploring panel_and_button_updates.append(gr.update(value=EXPLORE_ICON)) else: # Should not happen panel_and_button_updates.extend([gr.update(), gr.update()]) final_updates = [new_explored_id_to_set] + panel_and_button_updates return final_updates # --- Define outputs for event handlers --- # These lists define which Gradio components will receive updates from the handlers. # The order and number of components must match the list of updates returned by the handler. # Outputs for handle_panel_action (Insights/Formula buttons) action_buttons_outputs_list = [ global_actions_column_ui, global_actions_markdown_ui, active_panel_action_state # The gr.State object itself ] for cfg_item_action in plot_configs: # Iterate in defined order pid_action = cfg_item_action["id"] if pid_action in plot_ui_objects: action_buttons_outputs_list.append(plot_ui_objects[pid_action]["bomb_button"]) action_buttons_outputs_list.append(plot_ui_objects[pid_action]["formula_button"]) else: # Should not happen if plot_ui_objects is correctly populated action_buttons_outputs_list.extend([None, None]) # Add placeholders to maintain length # Outputs for handle_explore_click explore_buttons_outputs_list = [explored_plot_id_state] # The gr.State object for cfg_item_explore in plot_configs: # Iterate in defined order pid_explore = cfg_item_explore["id"] if pid_explore in plot_ui_objects: explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["panel_component"]) # For visibility explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["explore_button"]) # For icon else: # Should not happen explore_buttons_outputs_list.extend([None, None]) # --- Connect Action Buttons --- # Inputs for the click handlers that need current state values action_click_inputs = [active_panel_action_state, token_state] explore_click_inputs = [explored_plot_id_state] # Only needs explored_plot_id_state for config_item in plot_configs: plot_id = config_item["id"] if plot_id in plot_ui_objects: # Ensure component exists ui_obj = plot_ui_objects[plot_id] ui_obj["bomb_button"].click( fn=lambda current_active_val, current_token_val, p_id=plot_id: handle_panel_action(p_id, "insights", current_active_val, current_token_val), inputs=action_click_inputs, outputs=action_buttons_outputs_list, api_name=f"action_insights_{plot_id}" ) ui_obj["formula_button"].click( fn=lambda current_active_val, current_token_val, p_id=plot_id: handle_panel_action(p_id, "formula", current_active_val, current_token_val), inputs=action_click_inputs, outputs=action_buttons_outputs_list, api_name=f"action_formula_{plot_id}" ) ui_obj["explore_button"].click( fn=lambda current_explored_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val), inputs=explore_click_inputs, outputs=explore_buttons_outputs_list, api_name=f"action_explore_{plot_id}" ) else: logging.warning(f"UI object for plot_id '{plot_id}' not found when trying to attach click handlers. This might lead to issues.") # --- Function to Refresh All Analytics UI --- def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val): logging.info("Refreshing all analytics UI elements and resetting actions.") plot_generation_results = update_analytics_plots_figures( current_token_state, date_filter_val, custom_start_val, custom_end_val ) status_message_update = plot_generation_results[0] generated_plot_figures = plot_generation_results[1:] # Should be list of 23 figures or placeholders all_updates = [status_message_update] # For analytics_status_md # Updates for plot components for i in range(len(plot_configs)): if i < len(generated_plot_figures): all_updates.append(generated_plot_figures[i]) else: # Should not happen if update_analytics_plots_figures pads correctly all_updates.append(create_placeholder_plot("Figure Error", f"Missing figure for plot {i}")) # Updates for global action column and its content, and active_panel_action_state all_updates.append(gr.update(visible=False)) # global_actions_column_ui all_updates.append(gr.update(value="Click a button (💣, ƒ) on a plot...")) # global_actions_markdown_ui all_updates.append(None) # Reset active_panel_action_state # Updates for all action buttons (bomb, formula), explore buttons, and panel visibility for cfg in plot_configs: pid = cfg["id"] if pid in plot_ui_objects: all_updates.append(gr.update(value=BOMB_ICON)) # Reset bomb_button all_updates.append(gr.update(value=FORMULA_ICON)) # Reset formula_button all_updates.append(gr.update(value=EXPLORE_ICON)) # Reset explore_button all_updates.append(gr.update(visible=True)) # Reset panel_component visibility (all visible initially) else: # Should not happen all_updates.extend([None, None, None, None]) all_updates.append(None) # Reset explored_plot_id_state logging.info(f"Prepared {len(all_updates)} updates for analytics refresh.") return all_updates # --- Define outputs for the apply_filter_btn and sync.then() --- # This list must exactly match the structure of updates returned by refresh_all_analytics_ui_elements apply_filter_and_sync_outputs_list = [analytics_status_md] # 1. Status MD # 2. Plot components (23 of them) for config_item_filter_sync in plot_configs: pid_filter_sync = config_item_filter_sync["id"] if pid_filter_sync in plot_ui_objects and "plot_component" in plot_ui_objects[pid_filter_sync]: apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync]["plot_component"]) else: # Should not happen apply_filter_and_sync_outputs_list.append(None) # 3. Global action column, its markdown, and its state (3 items) apply_filter_and_sync_outputs_list.extend([ global_actions_column_ui, global_actions_markdown_ui, active_panel_action_state # The State object itself ]) # 4. Action buttons (bomb, formula), explore buttons, and panel visibility for each plot (23 * 4 = 92 items) for cfg_filter_sync_btns in plot_configs: pid_filter_sync_btns = cfg_filter_sync_btns["id"] if pid_filter_sync_btns in plot_ui_objects: apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["bomb_button"]) apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["formula_button"]) apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["explore_button"]) apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["panel_component"]) # For panel visibility else: # Should not happen apply_filter_and_sync_outputs_list.extend([None, None, None, None]) # 5. Explored plot ID state (1 item) apply_filter_and_sync_outputs_list.append(explored_plot_id_state) # The State object itself logging.info(f"Total outputs for apply_filter/sync: {len(apply_filter_and_sync_outputs_list)}") apply_filter_btn.click( fn=refresh_all_analytics_ui_elements, inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker], outputs=apply_filter_and_sync_outputs_list, # Use the carefully constructed list show_progress="full" ) with gr.TabItem("3️⃣ Mentions", id="tab_mentions"): refresh_mentions_display_btn = gr.Button("🔄 Refresh Mentions Display", variant="secondary") mentions_html = gr.HTML("Mentions data...") mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution") # This is a gr.Plot component refresh_mentions_display_btn.click( fn=run_mentions_tab_display, inputs=[token_state], outputs=[mentions_html, mentions_sentiment_dist_plot], # run_mentions_tab_display returns (html_str, fig_object) show_progress="full" ) with gr.TabItem("4️⃣ Follower Stats", id="tab_follower_stats"): refresh_follower_stats_btn = gr.Button("🔄 Refresh Follower Stats Display", variant="secondary") follower_stats_html = gr.HTML("Follower statistics...") with gr.Row(): fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains") with gr.Row(): fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)") fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)") refresh_follower_stats_btn.click( fn=run_follower_stats_tab_display, inputs=[token_state], outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry], show_progress="full" ) sync_event_part1 = sync_data_btn.click( fn=sync_all_linkedin_data_orchestrator, inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full" ) sync_event_part2 = sync_event_part1.then( fn=process_and_store_bubble_token, # This fn returns (status_msg, new_state, btn_update) inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn], show_progress=False # btn_update is for sync_data_btn ) sync_event_part3 = sync_event_part2.then( fn=display_main_dashboard, # This fn returns html_string inputs=[token_state], outputs=[dashboard_display_html], show_progress=False ) sync_event_final = sync_event_part3.then( fn=refresh_all_analytics_ui_elements, # This fn returns a list of updates inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker], outputs=apply_filter_and_sync_outputs_list, show_progress="full" # Use the carefully constructed list ) if __name__ == "__main__": if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' env var not set.") if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \ not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \ not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR): logging.warning("WARNING: Bubble env vars not fully set.") try: logging.info(f"Matplotlib version: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}") except ImportError: logging.error("Matplotlib is not installed. Plots will not be generated.") app.launch(server_name="0.0.0.0", server_port=7860, debug=True)