# app.py import gradio as gr import pandas as pd import os import logging from collections import defaultdict import matplotlib matplotlib.use('Agg') # Set backend for Matplotlib # --- Module Imports --- from utils.gradio_utils import get_url_user_token # Functions from newly created/refactored modules from config import ( PLOT_ID_TO_FORMULA_KEY_MAP, LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR ) # UPDATED: Using the new data loading function from the refactored state manager from services.state_manager import load_data_from_bubble from ui.ui_generators import ( display_main_dashboard, build_analytics_tab_plot_area, BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON ) from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot from formulas import PLOT_FORMULAS # --- CHATBOT MODULE IMPORTS --- from features.chatbot.chatbot_prompts import get_initial_insight_prompt_and_suggestions from features.chatbot.chatbot_handler import generate_llm_response # --- AGENTIC PIPELINE (DISPLAY ONLY) IMPORTS --- try: # UPDATED: Using the new display function to show pre-computed results from run_agentic_pipeline import load_and_display_agentic_results from ui.insights_ui_generator import format_single_okr_for_display AGENTIC_MODULES_LOADED = True except ImportError as e: logging.error(f"Could not import agentic pipeline display modules: {e}. Tabs 3 and 4 will be disabled.") AGENTIC_MODULES_LOADED = False # Placeholder for the new function name if imports fail def load_and_display_agentic_results(*args, **kwargs): # This tuple matches the expected number of outputs for the event handler return "Modules not loaded.", "Modules not loaded.", "Modules not loaded.", None, [], [], "Error" def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded. OKR display unavailable." # --- ANALYTICS TAB MODULE IMPORT --- from services.analytics_tab_module import AnalyticsTab # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s') # API Key Setup user_provided_api_key = os.environ.get("GEMINI_API_KEY") if user_provided_api_key: os.environ["GOOGLE_API_KEY"] = user_provided_api_key logging.info("GOOGLE_API_KEY environment variable has been set from GEMINI_API_KEY.") else: logging.error("CRITICAL ERROR: The API key environment variable 'GEMINI_API_KEY' was not found.") with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="LinkedIn Organization Dashboard") as app: # --- STATE MANAGEMENT --- token_state = gr.State(value={ "token": None, "client_id": None, "org_urn": None, "bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(), "bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(), "bubble_agentic_analysis_data": pd.DataFrame(), # To store agentic results from Bubble "url_user_token_temp_storage": None, # Config values remain useful for display components "config_date_col_posts": "published_at", "config_date_col_mentions": "date", "config_date_col_followers": "date", "config_media_type_col": "media_type", "config_eb_labels_col": "li_eb_label" }) # States for analytics tab chatbot chat_histories_st = gr.State({}) current_chat_plot_id_st = gr.State(None) plot_data_for_chatbot_st = gr.State({}) # States for agentic results display orchestration_raw_results_st = gr.State(None) # Stores reconstructed report/OKR dict from Bubble key_results_for_selection_st = gr.State([]) # Stores list of dicts for KR selection selected_key_result_ids_st = gr.State([]) # Stores unique_kr_ids selected by the user # --- UI LAYOUT --- gr.Markdown("# 🚀 LinkedIn Organization Dashboard") # Hidden components to receive URL parameters url_user_token_display = gr.Textbox(label="User Token (Hidden)", interactive=False, visible=False) org_urn_display = gr.Textbox(label="Org URN (Hidden)", interactive=False, visible=False) # General status display status_box = gr.Textbox(label="Status", interactive=False, value="Initializing...") # Load URL parameters on page load app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False) # UPDATED: Simplified initial data loading sequence def initial_data_load_sequence(url_token, org_urn_val, current_state): # This function now only loads data from Bubble and updates the main dashboard display status_msg, new_state = load_data_from_bubble(url_token, org_urn_val, current_state) dashboard_content = display_main_dashboard(new_state) return status_msg, new_state, dashboard_content # Instantiate the AnalyticsTab module (no changes needed here) analytics_icons = {'bomb': BOMB_ICON, 'explore': EXPLORE_ICON, 'formula': FORMULA_ICON, 'active': ACTIVE_ICON} analytics_tab_instance = AnalyticsTab( token_state=token_state, chat_histories_st=chat_histories_st, current_chat_plot_id_st=current_chat_plot_id_st, plot_data_for_chatbot_st=plot_data_for_chatbot_st, plot_id_to_formula_map=PLOT_ID_TO_FORMULA_KEY_MAP, plot_formulas_data=PLOT_FORMULAS, icons=analytics_icons, fn_build_plot_area=build_analytics_tab_plot_area, fn_update_plot_figures=update_analytics_plots_figures, fn_create_placeholder_plot=create_placeholder_plot, fn_get_initial_insight=get_initial_insight_prompt_and_suggestions, fn_generate_llm_response=generate_llm_response ) with gr.Tabs() as tabs: with gr.TabItem("1️⃣ Dashboard", id="tab_dashboard"): # REMOVED: Sync button and related UI components. This tab is now just for the main dashboard. gr.Markdown("I dati visualizzati in questo pannello sono caricati direttamente da Bubble.io.") dashboard_display_html = gr.HTML("
Caricamento dashboard...
") # Use the AnalyticsTab module to create Tab 2 analytics_tab_instance.create_tab_ui() # Tab 3: Agentic Analysis Report with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED): gr.Markdown("## 🤖 Comprehensive Analysis Report (from Bubble.io)") agentic_pipeline_status_md = gr.Markdown("Status: Loading report data...", visible=True) gr.Markdown("Questo report è stato pre-generato da un agente AI e caricato da Bubble.io.") agentic_report_display_md = gr.Markdown("The AI-generated report will be displayed here once loaded.") if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline display modules could not be loaded. This tab is disabled.") # Tab 4: Agentic OKRs & Tasks with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED): gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (from Bubble.io)") gr.Markdown("Basato sull'analisi AI pre-generata, l'agente ha proposto i seguenti OKR. Seleziona i Key Results per dettagli.") if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline display modules could not be loaded. This tab is disabled.") with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Suggested Key Results") key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True) with gr.Column(scale=3): gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results") okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui dopo il caricamento dei dati.") # This handler logic for the CheckboxGroup remains the same, as it operates on loaded data. def update_okr_display_on_selection(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list): if not raw_orchestration_results or not AGENTIC_MODULES_LOADED: return gr.update(value="Nessun dato di analisi caricato o moduli non disponibili.") actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs") if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list): return gr.update(value="Nessun OKR trovato nei dati di analisi caricati.") okrs_list = actionable_okrs_dict["okrs"] if not all_krs_for_selection or not isinstance(all_krs_for_selection, list): return gr.update(value="Errore interno: formato dati KR non valido.") kr_id_to_indices = {kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index']) for kr_info in all_krs_for_selection} selected_krs_by_okr_idx = defaultdict(list) if selected_kr_unique_ids: for kr_unique_id in selected_kr_unique_ids: if kr_unique_id in kr_id_to_indices: okr_idx, kr_idx = kr_id_to_indices[kr_unique_id] selected_krs_by_okr_idx[okr_idx].append(kr_idx) output_md_parts = [] for okr_idx, okr_data in enumerate(okrs_list): if not selected_kr_unique_ids: # Show all if nothing is selected output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=None, okr_main_index=okr_idx)) elif okr_idx in selected_krs_by_okr_idx: # Show only OKRs that have a selected KR accepted_indices = selected_krs_by_okr_idx.get(okr_idx) output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=accepted_indices, okr_main_index=okr_idx)) final_md = "\n\n---\n\n".join(output_md_parts) if output_md_parts else "Nessun OKR corrisponde alla selezione corrente." return gr.update(value=final_md) if AGENTIC_MODULES_LOADED: key_results_cbg.change( fn=update_okr_display_on_selection, inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st], outputs=[okr_detail_display_md] ) # --- EVENT HANDLING (SIMPLIFIED) --- # Define the output list for loading agentic results agentic_display_outputs = [ agentic_report_display_md, key_results_cbg, okr_detail_display_md, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st, agentic_pipeline_status_md ] # This is the main event chain that runs when the app loads initial_load_event = org_urn_display.change( fn=initial_data_load_sequence, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, dashboard_display_html], show_progress="full" ) # After initial data is loaded, refresh the analytics graphs initial_load_event.then( fn=analytics_tab_instance._refresh_analytics_graphs_ui, inputs=[ token_state, analytics_tab_instance.date_filter_selector, analytics_tab_instance.custom_start_date_picker, analytics_tab_instance.custom_end_date_picker, chat_histories_st ], outputs=analytics_tab_instance.graph_refresh_outputs_list, show_progress="full" # Then, load and display the pre-computed agentic results ).then( fn=load_and_display_agentic_results, # UPDATED function call inputs=[token_state, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st], outputs=agentic_display_outputs, show_progress="minimal" ) if __name__ == "__main__": # Environment variable checks remain important if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' is not set.") if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]): logging.warning("WARNING: One or more Bubble environment variables are not set.") if not AGENTIC_MODULES_LOADED: logging.warning("CRITICAL: Agentic pipeline display modules failed to load. Tabs 3 and 4 will be non-functional.") if not os.environ.get("GEMINI_API_KEY"): logging.warning("WARNING: 'GEMINI_API_KEY' is not set. This may be needed for chatbot features.") app.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), debug=True)