# run_agentic_pipeline.py """ This module is responsible for loading and displaying pre-computed AI analysis results (reports and OKRs) that have been fetched from Bubble.io. It does not perform any new analysis. """ import logging import gradio as gr # UI formatting and data reconstruction functions are still needed try: from ui.insights_ui_generator import ( format_report_to_markdown, extract_key_results_for_selection, format_single_okr_for_display ) from services.report_data_handler import fetch_and_reconstruct_data_from_bubble AGENTIC_MODULES_LOADED = True except ImportError as e: logging.error(f"Could not import agentic pipeline display modules: {e}. Tabs 3 and 4 will be disabled.") AGENTIC_MODULES_LOADED = False # Define placeholder functions if imports fail def format_report_to_markdown(report_string): return "Agentic modules not loaded. Report unavailable." def extract_key_results_for_selection(okrs_dict): return [] def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded. OKR display unavailable." def fetch_and_reconstruct_data_from_bubble(df): return None def load_and_display_agentic_results(current_token_state, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st): """ Loads pre-computed agentic analysis and OKR data from the application state (which was fetched from Bubble) and formats it for display in the Gradio UI. """ logging.info("Loading and displaying pre-computed agentic results from state.") # A tuple of Gradio updates to return in case of errors or no data initial_yield_updates = ( gr.update(value="Nessun dato di analisi trovato..."), # agentic_report_display_md gr.update(choices=[], value=[], interactive=False), # key_results_cbg gr.update(value="Nessun OKR trovato..."), # okr_detail_display_md None, # orchestration_raw_results_st [], # selected_key_result_ids_st [], # key_results_for_selection_st "Stato: In attesa di dati" # agentic_pipeline_status_md ) if not AGENTIC_MODULES_LOADED: logging.warning("Agentic display modules not loaded. Cannot display results.") error_updates = list(initial_yield_updates) error_updates[-1] = "Errore: Moduli AI non caricati." return tuple(error_updates) # The raw DataFrame fetched from Bubble's agentic analysis table agentic_data_df = current_token_state.get('bubble_agentic_analysis_data') if agentic_data_df is None or agentic_data_df.empty: logging.warning("No agentic analysis data found in the application state.") return initial_yield_updates # Use the handler to reconstruct the report and OKRs from the DataFrame reconstructed_data = fetch_and_reconstruct_data_from_bubble(agentic_data_df) if not reconstructed_data: logging.warning("Could not reconstruct agentic data from the fetched DataFrame.") error_updates = list(initial_yield_updates) error_updates[0] = gr.update(value="I dati di analisi esistenti non sono nel formato corretto.") error_updates[2] = gr.update(value="Impossibile visualizzare gli OKR.") error_updates[-1] = "Stato: Errore formato dati" return tuple(error_updates) # --- Prepare UI updates with the reconstructed data --- report_str = reconstructed_data.get('report_str', "Nessun report di analisi trovato nei dati.") actionable_okrs = reconstructed_data.get('actionable_okrs') # This is the dict with 'okrs' list # 1. Update Report Tab agentic_report_md_update = gr.update(value=format_report_to_markdown(report_str)) # 2. Update OKR Tab components if actionable_okrs and isinstance(actionable_okrs.get("okrs"), list): krs_for_ui_selection_list = extract_key_results_for_selection(actionable_okrs) kr_choices_for_cbg = [(kr['kr_description'], kr['unique_kr_id']) for kr in krs_for_ui_selection_list] key_results_cbg_update = gr.update(choices=kr_choices_for_cbg, value=[], interactive=True) krs_for_selection_state_update = krs_for_ui_selection_list all_okrs_md_parts = [ format_single_okr_for_display(okr_item, accepted_kr_indices=None, okr_main_index=okr_idx) for okr_idx, okr_item in enumerate(actionable_okrs["okrs"]) ] okr_detail_display_md_update = gr.update(value="\n\n---\n\n".join(all_okrs_md_parts)) else: # Handle case where there are no OKRs in the data krs_for_selection_state_update = [] key_results_cbg_update = gr.update(choices=[], value=[], interactive=False) okr_detail_display_md_update = gr.update(value="Nessun OKR trovato nei dati di analisi caricati.") # Return all the final updates for the Gradio interface return ( agentic_report_md_update, key_results_cbg_update, okr_detail_display_md_update, reconstructed_data, # Store the full reconstructed data dict in the state [], # Reset the selected KR IDs state krs_for_selection_state_update, # Update the state with all available KRs "Stato: Dati di analisi caricati correttamente da Bubble" # Final status message )