# sync_logic.py """ Handles the logic for syncing LinkedIn data: posts, mentions, and follower statistics. Fetches data from LinkedIn APIs, uploads to Bubble, and logs sync attempts. """ import pandas as pd import logging import html from datetime import timezone # Python's datetime # Assuming Bubble_API_Calls contains bulk_upload_to_bubble from Bubble_API_Calls import bulk_upload_to_bubble, fetch_linkedin_posts_data_from_bubble, update_record_in_bubble # Assuming Linkedin_Data_API_Calls contains all necessary LinkedIn data fetching and processing functions from Linkedin_Data_API_Calls import ( fetch_linkedin_posts_core, fetch_comments, analyze_sentiment, # For post comments compile_detailed_posts, prepare_data_for_bubble, # For posts, stats, comments fetch_linkedin_mentions_core, analyze_mentions_sentiment, # For individual mentions compile_detailed_mentions, # Compiles to user-specified format prepare_mentions_for_bubble # Prepares user-specified format for Bubble ) # Assuming linkedin_follower_stats.py contains get_linkedin_follower_stats from linkedin_follower_stats import get_linkedin_follower_stats # Assuming config.py contains all necessary constants from config import ( LINKEDIN_POST_URN_KEY, BUBBLE_POST_URN_COLUMN_NAME, BUBBLE_POSTS_TABLE_NAME, BUBBLE_POST_STATS_TABLE_NAME, BUBBLE_POST_COMMENTS_TABLE_NAME, BUBBLE_MENTIONS_TABLE_NAME, BUBBLE_MENTIONS_ID_COLUMN_NAME, BUBBLE_MENTIONS_DATE_COLUMN_NAME, DEFAULT_MENTIONS_INITIAL_FETCH_COUNT, DEFAULT_MENTIONS_UPDATE_FETCH_COUNT, BUBBLE_FOLLOWER_STATS_TABLE_NAME, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN, LINKEDIN_CLIENT_ID_ENV_VAR, # Though client_id is usually passed in token_state # NEW constants for logging BUBBLE_OPERATIONS_LOG_TABLE_NAME, BUBBLE_OPERATIONS_LOG_DATE_COLUMN, BUBBLE_OPERATIONS_LOG_SUBJECT_COLUMN, BUBBLE_OPERATIONS_LOG_ORG_URN_COLUMN, LOG_SUBJECT_POSTS, LOG_SUBJECT_MENTIONS, LOG_SUBJECT_FOLLOWER_STATS, BUBBLE_UNIQUE_ID_COLUMN_NAME ) def _log_sync_attempt(org_urn, subject, token_state): """ Logs a sync attempt to the Bubble operations log table and updates the operations log DataFrame in token_state. """ logging.info(f"Logging sync attempt for subject: {subject}, org_urn: {org_urn}") if not org_urn: logging.warning("Cannot log sync attempt: org_urn is missing.") return token_state try: log_entry_data = { BUBBLE_OPERATIONS_LOG_DATE_COLUMN: pd.Timestamp.now(tz='UTC').isoformat(), BUBBLE_OPERATIONS_LOG_SUBJECT_COLUMN: subject, BUBBLE_OPERATIONS_LOG_ORG_URN_COLUMN: org_urn } # Ensure data types are what Bubble expects, e.g., date as string # bulk_upload_to_bubble should handle dicts with basic types. upload_payload = [log_entry_data] bulk_upload_to_bubble(upload_payload, BUBBLE_OPERATIONS_LOG_TABLE_NAME) logging.info(f"Successfully logged sync attempt for {subject} to Bubble table '{BUBBLE_OPERATIONS_LOG_TABLE_NAME}'.") # Update token_state with the new log entry to keep it fresh current_log_df = token_state.get("bubble_operations_log_df", pd.DataFrame()) new_log_entry_df = pd.DataFrame(upload_payload) # DataFrame from the same data we uploaded # Ensure date column is datetime before concat if it exists and is not empty if not new_log_entry_df.empty and BUBBLE_OPERATIONS_LOG_DATE_COLUMN in new_log_entry_df.columns: new_log_entry_df[BUBBLE_OPERATIONS_LOG_DATE_COLUMN] = pd.to_datetime(new_log_entry_df[BUBBLE_OPERATIONS_LOG_DATE_COLUMN], errors='coerce', utc=True) if not current_log_df.empty and BUBBLE_OPERATIONS_LOG_DATE_COLUMN in current_log_df.columns: # Ensure existing log df date column is also datetime if not pd.api.types.is_datetime64_any_dtype(current_log_df[BUBBLE_OPERATIONS_LOG_DATE_COLUMN]): current_log_df[BUBBLE_OPERATIONS_LOG_DATE_COLUMN] = pd.to_datetime(current_log_df[BUBBLE_OPERATIONS_LOG_DATE_COLUMN], errors='coerce', utc=True) updated_log_df = pd.concat([current_log_df, new_log_entry_df], ignore_index=True) # To ensure the get_last_sync_attempt_date always gets the absolute latest, # we can sort and drop duplicates, keeping the last. # However, simply appending and letting max() find the latest is also fine. # For robustness, let's sort and keep the latest for each subject/org combo if multiple logs were made rapidly. if not updated_log_df.empty and all(col in updated_log_df.columns for col in [BUBBLE_OPERATIONS_LOG_DATE_COLUMN, BUBBLE_OPERATIONS_LOG_SUBJECT_COLUMN, BUBBLE_OPERATIONS_LOG_ORG_URN_COLUMN]): updated_log_df = updated_log_df.sort_values(by=BUBBLE_OPERATIONS_LOG_DATE_COLUMN).drop_duplicates( subset=[BUBBLE_OPERATIONS_LOG_SUBJECT_COLUMN, BUBBLE_OPERATIONS_LOG_ORG_URN_COLUMN], keep='last' ) token_state["bubble_operations_log_df"] = updated_log_df logging.info(f"Updated 'bubble_operations_log_df' in token_state after logging {subject}.") except Exception as e: logging.error(f"Failed to log sync attempt for {subject} or update token_state: {e}", exc_info=True) return token_state def _sync_linkedin_posts_internal(token_state, fetch_count_for_posts_api): """Internal logic for syncing LinkedIn posts.""" # This function is called by orchestrator only if fetch_count_for_posts_api > 0 # So, an attempt to sync posts is indeed happening. logging.info(f"Posts sync: Starting fetch for {fetch_count_for_posts_api} posts.") client_id = token_state.get("client_id") token_dict = token_state.get("token") org_urn = token_state.get('org_urn') bubble_posts_df_orig = token_state.get("bubble_posts_df", pd.DataFrame()).copy() posts_sync_message = "" attempt_logged = False # Flag to ensure log happens once try: # Basic checks before API call if not all([client_id, token_dict, org_urn]): posts_sync_message = "Posts: Config error (client_id, token, or org_urn missing). " logging.error(f"Posts sync: Prerequisite missing - client_id: {'OK' if client_id else 'Missing'}, token: {'OK' if token_dict else 'Missing'}, org_urn: {'OK' if org_urn else 'Missing'}") # Log attempt even if config error, as state_manager decided a sync *should* occur token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_POSTS, token_state) attempt_logged = True return posts_sync_message, token_state processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn, count=fetch_count_for_posts_api) if not processed_raw_posts: posts_sync_message = "Posts: None found via API. " logging.info("Posts sync: No raw posts returned from API.") # Log attempt as API was called token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_POSTS, token_state) attempt_logged = True return posts_sync_message, token_state existing_post_urns = set() if not bubble_posts_df_orig.empty and BUBBLE_POST_URN_COLUMN_NAME in bubble_posts_df_orig.columns: existing_post_urns = set(bubble_posts_df_orig[BUBBLE_POST_URN_COLUMN_NAME].dropna().astype(str)) new_raw_posts = [p for p in processed_raw_posts if str(p.get(LINKEDIN_POST_URN_KEY)) not in existing_post_urns] if not new_raw_posts: posts_sync_message = "Posts: All fetched already in Bubble. " logging.info("Posts sync: All fetched posts were already found in Bubble.") # Log attempt as API was called and processed token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_POSTS, token_state) attempt_logged = True return posts_sync_message, token_state logging.info(f"Posts sync: Processing {len(new_raw_posts)} new raw posts.") post_urns_to_process = [p[LINKEDIN_POST_URN_KEY] for p in new_raw_posts if p.get(LINKEDIN_POST_URN_KEY)] all_comments_data = fetch_comments(client_id, token_dict, post_urns_to_process, stats_map) sentiments_per_post = analyze_sentiment(all_comments_data) detailed_new_posts = compile_detailed_posts(new_raw_posts, stats_map, sentiments_per_post) li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_new_posts, all_comments_data) if li_posts: bulk_upload_to_bubble(li_posts, BUBBLE_POSTS_TABLE_NAME) updated_posts_df = pd.concat([bubble_posts_df_orig, pd.DataFrame(li_posts)], ignore_index=True) token_state["bubble_posts_df"] = updated_posts_df.drop_duplicates(subset=[BUBBLE_POST_URN_COLUMN_NAME], keep='last') logging.info(f"Posts sync: Uploaded {len(li_posts)} new posts to Bubble.") if li_post_stats: bulk_upload_to_bubble(li_post_stats, BUBBLE_POST_STATS_TABLE_NAME) logging.info(f"Posts sync: Uploaded {len(li_post_stats)} post_stats entries.") if li_post_comments: bulk_upload_to_bubble(li_post_comments, BUBBLE_POST_COMMENTS_TABLE_NAME) logging.info(f"Posts sync: Uploaded {len(li_post_comments)} post_comments entries.") posts_sync_message = f"Posts: Synced {len(li_posts)} new. " else: posts_sync_message = "Posts: No new ones to upload after processing. " logging.info("Posts sync: No new posts were prepared for Bubble upload.") except ValueError as ve: posts_sync_message = f"Posts Error: {html.escape(str(ve))}. " logging.error(f"Posts sync: ValueError: {ve}", exc_info=True) except Exception as e: logging.exception("Posts sync: Unexpected error during processing.") posts_sync_message = f"Posts: Unexpected error ({type(e).__name__}). " finally: # Log the sync attempt if it hasn't been logged already (e.g. due to early exit) # and if basic conditions (org_urn) for logging are met. if not attempt_logged and org_urn: token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_POSTS, token_state) return posts_sync_message, token_state def sync_linkedin_mentions(token_state): """Fetches new LinkedIn mentions and uploads them to Bubble, if scheduled by state_manager.""" logging.info("Starting LinkedIn mentions sync process check.") if not token_state.get("mentions_should_sync_now", False): logging.info("Mentions sync: Not scheduled by state_manager based on operations log. Skipping.") return "Mentions: Sync not currently required by schedule. ", token_state logging.info("Mentions sync: Proceeding as scheduled by state_manager.") if not token_state or not token_state.get("token"): logging.error("Mentions sync: Access denied. No LinkedIn token.") # Still log an attempt if org_urn is available, as a sync was scheduled org_urn_for_log = token_state.get('org_urn') if token_state else None if org_urn_for_log: token_state = _log_sync_attempt(org_urn_for_log, LOG_SUBJECT_MENTIONS, token_state) return "Mentions: No token. ", token_state client_id = token_state.get("client_id") token_dict = token_state.get("token") org_urn = token_state.get('org_urn') bubble_mentions_df_orig = token_state.get("bubble_mentions_df", pd.DataFrame()).copy() mentions_sync_message = "" attempt_logged = False if not org_urn or not client_id or client_id == "ENV VAR MISSING": logging.error("Mentions sync: Configuration error (Org URN or Client ID missing).") if org_urn: # Log if possible token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_MENTIONS, token_state) attempt_logged = True return "Mentions: Config error. ", token_state # Determine fetch count: initial if no mentions data, update otherwise fetch_count_for_mentions_api = DEFAULT_MENTIONS_INITIAL_FETCH_COUNT \ if bubble_mentions_df_orig.empty else DEFAULT_MENTIONS_UPDATE_FETCH_COUNT logging.info(f"Mentions sync: Fetch count set to {fetch_count_for_mentions_api}.") try: processed_raw_mentions = fetch_linkedin_mentions_core(client_id, token_dict, org_urn, count=fetch_count_for_mentions_api) if not processed_raw_mentions: logging.info("Mentions sync: No new mentions found via API.") mentions_sync_message = "Mentions: None found via API. " token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_MENTIONS, token_state) attempt_logged = True return mentions_sync_message, token_state existing_mention_ids = set() if not bubble_mentions_df_orig.empty and BUBBLE_MENTIONS_ID_COLUMN_NAME in bubble_mentions_df_orig.columns: existing_mention_ids = set(bubble_mentions_df_orig[BUBBLE_MENTIONS_ID_COLUMN_NAME].dropna().astype(str)) sentiments_map = analyze_mentions_sentiment(processed_raw_mentions) all_compiled_mentions = compile_detailed_mentions(processed_raw_mentions, sentiments_map) new_compiled_mentions_to_upload = [ m for m in all_compiled_mentions if str(m.get("id")) not in existing_mention_ids ] if not new_compiled_mentions_to_upload: logging.info("Mentions sync: All fetched mentions are already in Bubble.") mentions_sync_message = "Mentions: All fetched already in Bubble. " token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_MENTIONS, token_state) attempt_logged = True return mentions_sync_message, token_state bubble_ready_mentions = prepare_mentions_for_bubble(new_compiled_mentions_to_upload) if bubble_ready_mentions: bulk_upload_to_bubble(bubble_ready_mentions, BUBBLE_MENTIONS_TABLE_NAME) logging.info(f"Successfully uploaded {len(bubble_ready_mentions)} new mentions to Bubble.") updated_mentions_df = pd.concat([bubble_mentions_df_orig, pd.DataFrame(bubble_ready_mentions)], ignore_index=True) token_state["bubble_mentions_df"] = updated_mentions_df.drop_duplicates(subset=[BUBBLE_MENTIONS_ID_COLUMN_NAME], keep='last') mentions_sync_message = f"Mentions: Synced {len(bubble_ready_mentions)} new. " else: logging.info("Mentions sync: No new mentions were prepared for Bubble upload.") mentions_sync_message = "Mentions: No new ones to upload. " except ValueError as ve: logging.error(f"ValueError during mentions sync: {ve}", exc_info=True) mentions_sync_message = f"Mentions Error: {html.escape(str(ve))}. " except Exception as e: logging.exception("Unexpected error in sync_linkedin_mentions.") mentions_sync_message = f"Mentions: Unexpected error ({type(e).__name__}). " finally: if not attempt_logged and org_urn: token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_MENTIONS, token_state) return mentions_sync_message, token_state def _clean_key_component(component_value, is_category_identifier=False): """ Helper to consistently clean key components. For non-date category identifiers, converts to lowercase for case-insensitive matching. """ if pd.isna(component_value) or component_value is None: return "NONE_VALUE" # Consistent placeholder for None/NaN cleaned_value = str(component_value).strip() if is_category_identifier: # Apply lowercasing only to general category text, not dates or URNs/Types return cleaned_value.lower() return cleaned_value def sync_linkedin_follower_stats(token_state): """ Fetches new/updated LinkedIn follower statistics and uploads/updates them in Bubble, if scheduled by state_manager. Includes detailed logging for debugging key mismatches. """ logging.info("DEBUG: Starting LinkedIn follower stats sync process check.") if not token_state.get("fs_should_sync_now", False): logging.info("DEBUG: Follower Stats sync: Not scheduled by state_manager. Skipping.") return "Follower Stats: Sync not currently required by schedule. ", token_state logging.info("DEBUG: Follower Stats sync: Proceeding as scheduled by state_manager.") if not token_state or not token_state.get("token"): logging.error("DEBUG: Follower Stats sync: Access denied. No LinkedIn token.") org_urn_for_log = token_state.get('org_urn') if token_state else None if org_urn_for_log: token_state = _log_sync_attempt(org_urn_for_log, LOG_SUBJECT_FOLLOWER_STATS, token_state) return "Follower Stats: No token. ", token_state client_id = token_state.get("client_id") token_dict = token_state.get("token") org_urn = token_state.get('org_urn') bubble_follower_stats_df_orig = token_state.get("bubble_follower_stats_df", pd.DataFrame()).copy() follower_stats_sync_message = "" attempt_logged = False if not org_urn or not client_id or client_id == "ENV VAR MISSING": logging.error("DEBUG: Follower Stats sync: Configuration error (Org URN or Client ID missing).") if org_urn: token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state) attempt_logged = True return "Follower Stats: Config error. ", token_state if not bubble_follower_stats_df_orig.empty and BUBBLE_UNIQUE_ID_COLUMN_NAME not in bubble_follower_stats_df_orig.columns: logging.error(f"DEBUG: Follower Stats sync: Critical error - '{BUBBLE_UNIQUE_ID_COLUMN_NAME}' column missing in bubble_follower_stats_df. Cannot proceed with updates.") if org_urn: token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state) attempt_logged = True return f"Follower Stats: Config error ({BUBBLE_UNIQUE_ID_COLUMN_NAME} missing). ", token_state logging.info(f"DEBUG: Follower stats sync proceeding for org_urn: {org_urn}") try: api_follower_stats = get_linkedin_follower_stats(client_id, token_dict, org_urn) if not api_follower_stats: # This is a list of dicts logging.info(f"DEBUG: Follower Stats sync: No stats found via API for org {org_urn}. API returned: {api_follower_stats}") follower_stats_sync_message = "Follower Stats: None found via API. " token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state) attempt_logged = True return follower_stats_sync_message, token_state stats_for_bulk_upload = [] records_to_update_via_patch = [] existing_stats_map = {} stats_required_cols = [ FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN, BUBBLE_UNIQUE_ID_COLUMN_NAME ] logging.info("DEBUG: Populating existing_stats_map from Bubble data...") if not bubble_follower_stats_df_orig.empty and all(col in bubble_follower_stats_df_orig.columns for col in stats_required_cols): for index, row in bubble_follower_stats_df_orig.iterrows(): org_urn_val = _clean_key_component(row[FOLLOWER_STATS_ORG_URN_COLUMN]) type_val = _clean_key_component(row[FOLLOWER_STATS_TYPE_COLUMN]) category_raw_val = row[FOLLOWER_STATS_CATEGORY_COLUMN] bubble_id_val = row.get(BUBBLE_UNIQUE_ID_COLUMN_NAME) if pd.isna(bubble_id_val): logging.warning(f"DEBUG: Row index {index} from Bubble data has missing Bubble ID ('{BUBBLE_UNIQUE_ID_COLUMN_NAME}'). Cannot use for updates. Data: {row.to_dict()}") continue category_identifier = "" if type_val == 'follower_gains_monthly': # Type is already cleaned parsed_date = pd.to_datetime(category_raw_val, errors='coerce') if pd.NaT is parsed_date or pd.isna(parsed_date): logging.warning(f"DEBUG: Could not parse date for existing monthly gain: '{category_raw_val}' from Bubble row index {index}. Skipping for map.") continue category_identifier = parsed_date.strftime('%Y-%m-%d') # Date format, not lowercased else: # Apply lowercasing for general text categories for case-insensitive matching category_identifier = _clean_key_component(category_raw_val, is_category_identifier=True) key = (org_urn_val, type_val, category_identifier) # Ensure counts are numeric when storing in map existing_organic_count = pd.to_numeric(row[FOLLOWER_STATS_ORGANIC_COLUMN], errors='coerce') existing_paid_count = pd.to_numeric(row[FOLLOWER_STATS_PAID_COLUMN], errors='coerce') existing_organic_count = 0 if pd.isna(existing_organic_count) else int(existing_organic_count) existing_paid_count = 0 if pd.isna(existing_paid_count) else int(existing_paid_count) existing_stats_map[key] = ( existing_organic_count, existing_paid_count, str(bubble_id_val) # Ensure Bubble ID is string ) logging.debug(f"DEBUG: Added to existing_stats_map: Key={key}, BubbleID={str(bubble_id_val)}, OrgCounts={existing_organic_count}, PaidCounts={existing_paid_count}") elif not bubble_follower_stats_df_orig.empty: logging.warning(f"DEBUG: Follower Stats: Bubble data is missing one or more required columns for map: {stats_required_cols}.") else: logging.info("DEBUG: Follower Stats: Bubble_follower_stats_df_orig is empty. existing_stats_map will be empty.") logging.info(f"DEBUG: Processing {len(api_follower_stats)} stats from API...") for i, stat_from_api in enumerate(api_follower_stats): # api_follower_stats is a list of dicts api_org_urn = _clean_key_component(stat_from_api.get(FOLLOWER_STATS_ORG_URN_COLUMN)) api_type = _clean_key_component(stat_from_api.get(FOLLOWER_STATS_TYPE_COLUMN)) api_category_raw = stat_from_api.get(FOLLOWER_STATS_CATEGORY_COLUMN) api_category_identifier = "" if api_type == 'follower_gains_monthly': # API type is already cleaned parsed_date = pd.to_datetime(api_category_raw, errors='coerce') if pd.NaT is parsed_date or pd.isna(parsed_date): logging.warning(f"DEBUG: API stat index {i}: Could not parse date for API monthly gain: '{api_category_raw}'. Skipping.") continue api_category_identifier = parsed_date.strftime('%Y-%m-%d') # Date format, not lowercased else: # Apply lowercasing for general text categories for case-insensitive matching api_category_identifier = _clean_key_component(api_category_raw, is_category_identifier=True) key_from_api = (api_org_urn, api_type, api_category_identifier) logging.debug(f"DEBUG: API stat index {i}: Generated Key={key_from_api}, RawData={stat_from_api}") # Ensure API counts are numeric api_organic_count = pd.to_numeric(stat_from_api.get(FOLLOWER_STATS_ORGANIC_COLUMN), errors='coerce') api_paid_count = pd.to_numeric(stat_from_api.get(FOLLOWER_STATS_PAID_COLUMN), errors='coerce') api_organic_count = 0 if pd.isna(api_organic_count) else int(api_organic_count) api_paid_count = 0 if pd.isna(api_paid_count) else int(api_paid_count) if key_from_api not in existing_stats_map: logging.info(f"DEBUG: API stat index {i}: Key={key_from_api} NOT FOUND in existing_stats_map. Adding for BULK UPLOAD.") stats_for_bulk_upload.append(stat_from_api) else: existing_organic, existing_paid, bubble_id = existing_stats_map[key_from_api] # Counts are already int from map logging.info(f"DEBUG: API stat index {i}: Key={key_from_api} FOUND in existing_stats_map. BubbleID={bubble_id}. ExistingCounts(O/P): {existing_organic}/{existing_paid}. APICounts(O/P): {api_organic_count}/{api_paid_count}.") fields_to_update_in_bubble = {} if api_organic_count > existing_organic: fields_to_update_in_bubble[FOLLOWER_STATS_ORGANIC_COLUMN] = api_organic_count logging.debug(f"DEBUG: API stat index {i}: Organic count update: API({api_organic_count}) > Bubble({existing_organic}) for BubbleID {bubble_id}") if api_paid_count > existing_paid: fields_to_update_in_bubble[FOLLOWER_STATS_PAID_COLUMN] = api_paid_count logging.debug(f"DEBUG: API stat index {i}: Paid count update: API({api_paid_count}) > Bubble({existing_paid}) for BubbleID {bubble_id}") if fields_to_update_in_bubble: records_to_update_via_patch.append((bubble_id, fields_to_update_in_bubble)) logging.info(f"DEBUG: API stat index {i}: Queued for PATCH update. BubbleID={bubble_id}, Updates={fields_to_update_in_bubble}") else: logging.info(f"DEBUG: API stat index {i}: Counts are not greater or equal. No update needed for BubbleID={bubble_id}.") num_bulk_uploaded = 0 if stats_for_bulk_upload: logging.info(f"DEBUG: Attempting to bulk upload {len(stats_for_bulk_upload)} new follower stat entries.") if bulk_upload_to_bubble(stats_for_bulk_upload, BUBBLE_FOLLOWER_STATS_TABLE_NAME): num_bulk_uploaded = len(stats_for_bulk_upload) logging.info(f"Successfully bulk-uploaded {num_bulk_uploaded} new follower stat entries to Bubble for org {org_urn}.") else: logging.error(f"Failed to bulk-upload {len(stats_for_bulk_upload)} new follower stat entries for org {org_urn}.") num_patched_updated = 0 if records_to_update_via_patch: logging.info(f"DEBUG: Attempting to PATCH update {len(records_to_update_via_patch)} follower stat entries.") successfully_patched_ids_and_data_temp = [] # To store what was actually successful for token_state update for bubble_id, fields_to_update in records_to_update_via_patch: if update_record_in_bubble(BUBBLE_FOLLOWER_STATS_TABLE_NAME, bubble_id, fields_to_update): num_patched_updated += 1 successfully_patched_ids_and_data_temp.append({'bubble_id': bubble_id, 'fields': fields_to_update}) else: logging.error(f"Failed to update record {bubble_id} via PATCH for follower stats for org {org_urn}.") logging.info(f"Attempted to update {len(records_to_update_via_patch)} follower stat entries via PATCH, {num_patched_updated} succeeded for org {org_urn}.") if not stats_for_bulk_upload and not records_to_update_via_patch: logging.info(f"DEBUG: Follower Stats sync: Data for org {org_urn} is up-to-date or no changes met update criteria.") follower_stats_sync_message = "Follower Stats: Data up-to-date or no qualifying changes. " else: follower_stats_sync_message = f"Follower Stats: Synced (New: {num_bulk_uploaded}, Updated: {num_patched_updated}). " # --- Update token_state's follower stats DataFrame --- current_data_for_state_df = bubble_follower_stats_df_orig.copy() if num_patched_updated > 0: # Check against actual successful patches for item in successfully_patched_ids_and_data_temp: # Iterate over successfully patched items bubble_id = item['bubble_id'] fields_updated = item['fields'] idx = current_data_for_state_df[current_data_for_state_df[BUBBLE_UNIQUE_ID_COLUMN_NAME] == bubble_id].index if not idx.empty: for col, value in fields_updated.items(): current_data_for_state_df.loc[idx, col] = value if num_bulk_uploaded > 0: # Check against actual successful bulk uploads successfully_created_stats = stats_for_bulk_upload[:num_bulk_uploaded] # Slice based on success count if successfully_created_stats: newly_created_df = pd.DataFrame(successfully_created_stats) if not newly_created_df.empty: for col in current_data_for_state_df.columns: if col not in newly_created_df.columns: newly_created_df[col] = pd.NA aligned_newly_created_df = newly_created_df.reindex(columns=current_data_for_state_df.columns).fillna(pd.NA) current_data_for_state_df = pd.concat([current_data_for_state_df, aligned_newly_created_df], ignore_index=True) if not current_data_for_state_df.empty: monthly_part = current_data_for_state_df[current_data_for_state_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].copy() if not monthly_part.empty: # Ensure FOLLOWER_STATS_CATEGORY_COLUMN is string before strftime, after to_datetime monthly_part.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = pd.to_datetime(monthly_part[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce').dt.strftime('%Y-%m-%d') monthly_part = monthly_part.drop_duplicates( subset=[FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN], keep='last' ) demographics_part = current_data_for_state_df[current_data_for_state_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'].copy() if not demographics_part.empty: # For demographics, category is already cleaned (and lowercased) if it was text # Ensure all subset columns exist before drop_duplicates demo_subset_cols = [FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN] if all(col in demographics_part.columns for col in demo_subset_cols): # Clean the category column here again to match the key generation for demographics demographics_part.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = demographics_part[FOLLOWER_STATS_CATEGORY_COLUMN].apply(lambda x: _clean_key_component(x, is_category_identifier=True)) demographics_part = demographics_part.drop_duplicates( subset=demo_subset_cols, keep='last' ) else: logging.warning(f"DEBUG: Demographics part missing one of {demo_subset_cols} for deduplication.") if monthly_part.empty and demographics_part.empty: token_state["bubble_follower_stats_df"] = pd.DataFrame(columns=bubble_follower_stats_df_orig.columns) elif monthly_part.empty: # only demographics_part has data or is empty token_state["bubble_follower_stats_df"] = demographics_part.reset_index(drop=True) if not demographics_part.empty else pd.DataFrame(columns=bubble_follower_stats_df_orig.columns) elif demographics_part.empty: # only monthly_part has data or is empty token_state["bubble_follower_stats_df"] = monthly_part.reset_index(drop=True) if not monthly_part.empty else pd.DataFrame(columns=bubble_follower_stats_df_orig.columns) else: # both have data token_state["bubble_follower_stats_df"] = pd.concat([monthly_part, demographics_part], ignore_index=True) else: # if current_data_for_state_df ended up empty token_state["bubble_follower_stats_df"] = pd.DataFrame(columns=bubble_follower_stats_df_orig.columns) except ValueError as ve: logging.error(f"DEBUG: ValueError during follower stats sync for {org_urn}: {ve}", exc_info=True) follower_stats_sync_message = f"Follower Stats Error: {html.escape(str(ve))}. " except Exception as e: # Catch any other unexpected error logging.exception(f"DEBUG: Unexpected error in sync_linkedin_follower_stats for {org_urn}.") # .exception logs stack trace follower_stats_sync_message = f"Follower Stats: Unexpected error ({type(e).__name__}). " finally: if not attempt_logged and org_urn: # Ensure log attempt happens if not already logged due to early exit token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state) return follower_stats_sync_message, token_state def sync_all_linkedin_data_orchestrator(token_state): """Orchestrates the syncing of all LinkedIn data types (Posts, Mentions, Follower Stats).""" logging.info("Starting sync_all_linkedin_data_orchestrator process.") if not token_state or not token_state.get("token"): logging.error("Sync All: Access denied. LinkedIn token not available.") return "
❌ Access denied. LinkedIn token not available.
", token_state org_urn = token_state.get('org_urn') client_id = token_state.get("client_id") posts_sync_message = "" mentions_sync_message = "" follower_stats_sync_message = "" if not org_urn: logging.error("Sync All: Org URN missing in token_state.") return "❌ Config error: Org URN missing.
", token_state if not client_id or client_id == "ENV VAR MISSING": logging.error("Sync All: Client ID missing or not set in token_state.") return "❌ Config error: Client ID missing.
", token_state # --- Sync Posts --- fetch_count_for_posts_api = token_state.get('fetch_count_for_api', 0) if fetch_count_for_posts_api == 0: # This means state_manager determined no post sync is needed based on log posts_sync_message = "Posts: Sync not currently required by schedule. " logging.info("Posts sync: Skipped as fetch_count_for_posts_api is 0 (determined by state_manager).") else: posts_sync_message, token_state = _sync_linkedin_posts_internal(token_state, fetch_count_for_posts_api) # _sync_linkedin_posts_internal now handles its own logging internally # --- Sync Mentions --- # sync_linkedin_mentions will check token_state.get("mentions_should_sync_now") # and log its attempt internally. mentions_sync_message, token_state = sync_linkedin_mentions(token_state) # --- Sync Follower Stats --- # sync_linkedin_follower_stats will check token_state.get("fs_should_sync_now") # and log its attempt internally. follower_stats_sync_message, token_state = sync_linkedin_follower_stats(token_state) logging.info(f"Sync process complete. Messages: Posts: [{posts_sync_message.strip()}], Mentions: [{mentions_sync_message.strip()}], Follower Stats: [{follower_stats_sync_message.strip()}]") final_message = f"✅ Sync Attempted. {posts_sync_message} {mentions_sync_message} {follower_stats_sync_message}
" return final_message, token_state