import gradio as gr import pandas as pd import os import logging import matplotlib matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio import matplotlib.pyplot as plt # --- Module Imports --- from gradio_utils import get_url_user_token # Functions from newly created/refactored modules from config import ( LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR ) from state_manager import process_and_store_bubble_token from sync_logic import sync_all_linkedin_data_orchestrator from ui_generators import ( display_main_dashboard, run_mentions_tab_display, run_follower_stats_tab_display ) # Corrected import for analytics_data_processing from analytics_data_processing import prepare_filtered_analytics_data from analytics_plot_generator import ( generate_posts_activity_plot, generate_engagement_type_plot, generate_mentions_activity_plot, generate_mention_sentiment_plot, generate_followers_count_over_time_plot, generate_followers_growth_rate_plot, generate_followers_by_demographics_plot, generate_engagement_rate_over_time_plot, generate_reach_over_time_plot, generate_impressions_over_time_plot, create_placeholder_plot, # For initializing plots # --- Import new plot functions --- generate_likes_over_time_plot, generate_clicks_over_time_plot, generate_shares_over_time_plot, generate_comments_over_time_plot, generate_comments_sentiment_breakdown_plot ) # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s') # --- Analytics Tab: Plot Update Function --- def update_analytics_plots(token_state_value, date_filter_option, custom_start_date, custom_end_date): """ Prepares analytics data using external processing function and then generates plots. """ logging.info(f"Updating analytics plots. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}") # --- Increased number of expected plots --- num_expected_plots = 18 # Was 13, added 5 new plots if not token_state_value or not token_state_value.get("token"): message = "❌ Access denied. No token. Cannot generate analytics." logging.warning(message) placeholder_figs = [create_placeholder_plot(title="Access Denied", message="No token.") for _ in range(num_expected_plots)] return [message] + placeholder_figs try: # prepare_filtered_analytics_data might need to be updated if new DFs are required for new plots (e.g. comment sentiment) # For now, we assume it returns the same set of DFs and new plots will try to use them or handle missing data. (filtered_merged_posts_df, filtered_mentions_df, date_filtered_follower_stats_df, raw_follower_stats_df, start_dt_for_msg, end_dt_for_msg) = \ prepare_filtered_analytics_data( token_state_value, date_filter_option, custom_start_date, custom_end_date ) # Hypothetical: If prepare_filtered_analytics_data was updated to return comment sentiment data: # filtered_comments_with_sentiment_df = ... # (This would be the 7th item in the tuple) # For now, we will pass filtered_merged_posts_df to generate_comments_sentiment_breakdown_plot, # and that function will handle missing sentiment columns by showing a placeholder. # Or, if you have comment sentiment data in another DataFrame in token_state, retrieve it here. # e.g., comments_df_with_sentiment = token_state_value.get("bubble_comments_sentiment_df", pd.DataFrame()) except Exception as e: error_msg = f"❌ Error preparing analytics data: {e}" logging.error(error_msg, exc_info=True) placeholder_figs = [create_placeholder_plot(title="Data Preparation Error", message=str(e)) for _ in range(num_expected_plots)] return [error_msg] + placeholder_figs date_column_posts = token_state_value.get("config_date_col_posts", "published_at") date_column_mentions = token_state_value.get("config_date_col_mentions", "date") # config_date_col_followers_source = token_state_value.get("config_date_col_followers", "date") logging.info(f"Data for plotting - Filtered Merged Posts: {len(filtered_merged_posts_df)} rows, Filtered Mentions: {len(filtered_mentions_df)} rows.") logging.info(f"Date-Filtered Follower Stats: {len(date_filtered_follower_stats_df)} rows, Raw Follower Stats: {len(raw_follower_stats_df)} rows.") try: # Existing plots plot_posts_activity = generate_posts_activity_plot(filtered_merged_posts_df, date_column=date_column_posts) plot_engagement_type = generate_engagement_type_plot(filtered_merged_posts_df) plot_mentions_activity = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions) plot_mention_sentiment = generate_mention_sentiment_plot(filtered_mentions_df) plot_followers_count = generate_followers_count_over_time_plot( date_filtered_follower_stats_df, type_filter_column='follower_count_type', type_value='follower_gains_monthly' ) plot_followers_growth_rate = generate_followers_growth_rate_plot( date_filtered_follower_stats_df, type_filter_column='follower_count_type', type_value='follower_gains_monthly' ) plot_followers_by_location = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_geo', plot_title="Followers by Location") plot_followers_by_role = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_function', plot_title="Followers by Role") plot_followers_by_industry = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_industry', plot_title="Followers by Industry") plot_followers_by_seniority = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_seniority', plot_title="Followers by Seniority") plot_engagement_rate = generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, engagement_rate_col='engagement') plot_reach_over_time = generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, reach_col='clickCount') plot_impressions_over_time = generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, impressions_col='impressionCount') # --- Generate new plots --- plot_likes_over_time = generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, likes_col='likeCount') plot_clicks_over_time = generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, clicks_col='clickCount') plot_shares_over_time = generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, shares_col='shareCount') plot_comments_over_time = generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, comments_col='commentCount') # For comment sentiment, pass a DataFrame that is expected to have comment-level sentiment. # If `filtered_merged_posts_df` is passed and lacks 'comment_sentiment' column, the plot function will show a placeholder. # If you have a specific df for this, e.g., `filtered_comments_with_sentiment_df` from `prepare_filtered_analytics_data` (if modified) # or from `token_state_value.get("bubble_comments_sentiment_df")`, use that one. # For this example, we assume `filtered_merged_posts_df` is passed and the plot function handles it. plot_comments_sentiment_breakdown = generate_comments_sentiment_breakdown_plot( filtered_merged_posts_df, # Or your specific df with comment sentiments sentiment_column='sentiment' # Assuming 'sentiment' column in post_df might be a proxy, or change to 'comment_sentiment' if that column exists # The plot function will show a placeholder if this column isn't suitable or found. ) message = f"📊 Analytics updated for period: {date_filter_option}" if date_filter_option == "Custom Range": s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any" e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any" message += f" (From: {s_display} To: {e_display})" all_generated_plots = [ plot_posts_activity, plot_engagement_type, plot_mentions_activity, plot_mention_sentiment, plot_followers_count, plot_followers_growth_rate, plot_followers_by_location, plot_followers_by_role, plot_followers_by_industry, plot_followers_by_seniority, plot_engagement_rate, plot_reach_over_time, plot_impressions_over_time, # --- Add new plot objects to the list --- plot_likes_over_time, plot_clicks_over_time, plot_shares_over_time, plot_comments_over_time, plot_comments_sentiment_breakdown ] num_plots_generated = sum(1 for p in all_generated_plots if p is not None and not isinstance(p, str)) logging.info(f"Successfully generated {num_plots_generated} plots out of {num_expected_plots} expected.") # Ensure the number of returned plots matches num_expected_plots, padding with placeholders if necessary # This is crucial if some plot functions might return None on error and we need to match the Gradio outputs list length final_plots_list = [] for p in all_generated_plots: if p is not None and not isinstance(p, str): # isinstance check for safety, though plots should be figs final_plots_list.append(p) else: # If a plot failed and returned None or an error string (which it shouldn't, should be placeholder fig) logging.warning(f"A plot generation failed or returned unexpected type, using placeholder. Plot: {p}") final_plots_list.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot.")) # If fewer plots were generated than expected (e.g. due to early exit or major error in a plot function) while len(final_plots_list) < num_expected_plots: logging.warning(f"Padding missing plot with placeholder. Expected {num_expected_plots}, got {len(final_plots_list)} so far.") final_plots_list.append(create_placeholder_plot(title="Missing Plot", message="Plot could not be generated.")) if len(final_plots_list) > num_expected_plots + 5: # Safety break logging.error("Too many placeholders added, breaking loop.") break return [message] + final_plots_list[:num_expected_plots] # Ensure correct number of outputs except Exception as e: error_msg = f"❌ Error generating analytics plots: {e}" logging.error(error_msg, exc_info=True) placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)] return [error_msg] + placeholder_figs # --- Gradio UI Blocks --- with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="LinkedIn Organization Dashboard") as app: token_state = gr.State(value={ "token": None, "client_id": None, "org_urn": None, "bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(), "bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(), # Consider adding "bubble_comments_sentiment_df": pd.DataFrame() if you plan to fetch this data "fetch_count_for_api": 0, "url_user_token_temp_storage": None, "config_date_col_posts": "published_at", "config_date_col_mentions": "date", "config_date_col_followers": "date" }) gr.Markdown("# 🚀 LinkedIn Organization Dashboard") url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False) status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...") org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False) app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False) def initial_load_sequence(url_token, org_urn_val, current_state): logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}") status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state) dashboard_content = display_main_dashboard(new_state) return status_msg, new_state, btn_update, dashboard_content with gr.Tabs() as tabs: with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"): gr.Markdown("System checks for existing data from Bubble. The 'Sync' button activates if new data needs to be fetched from LinkedIn based on the last sync times and data availability.") sync_data_btn = gr.Button("🔄 Sync LinkedIn Data", variant="primary", visible=False, interactive=False) sync_status_html_output = gr.HTML("
Sync status will appear here.
") dashboard_display_html = gr.HTML("Dashboard loading...
") org_urn_display.change( fn=initial_load_sequence, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn, dashboard_display_html], show_progress="full" ) sync_click_event = sync_data_btn.click( fn=sync_all_linkedin_data_orchestrator, inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full" ).then( fn=process_and_store_bubble_token, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn], show_progress=False ).then( fn=display_main_dashboard, inputs=[token_state], outputs=[dashboard_display_html], show_progress=False ) with gr.TabItem("2️⃣ Analytics", id="tab_analytics"): gr.Markdown("## 📈 LinkedIn Performance Analytics") gr.Markdown("Select a date range to filter Posts and Mentions analytics. Follower demographic plots show overall latest data. Follower time-series plots respect the selected date range if applicable to their data source (e.g. monthly gains).") analytics_status_md = gr.Markdown("Analytics status will appear here...") with gr.Row(): date_filter_selector = gr.Radio( ["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"], label="Select Date Range (for Posts, Mentions, and some Follower time-series)", value="Last 30 Days" ) custom_start_date_picker = gr.DateTime(label="Start Date (Custom)", visible=False, include_time=False, type="datetime") # Changed to datetime custom_end_date_picker = gr.DateTime(label="End Date (Custom)", visible=False, include_time=False, type="datetime") # Changed to datetime apply_filter_btn = gr.Button("🔍 Apply Filter & Refresh Analytics", variant="primary") def toggle_custom_date_pickers(selection): is_custom = selection == "Custom Range" return gr.update(visible=is_custom), gr.update(visible=is_custom) date_filter_selector.change( fn=toggle_custom_date_pickers, inputs=[date_filter_selector], outputs=[custom_start_date_picker, custom_end_date_picker] ) gr.Markdown("### Posts & Engagement Overview (Filtered by Date)") with gr.Row(): posts_activity_plot = gr.Plot(label="Posts Activity Over Time") engagement_type_plot = gr.Plot(label="Post Engagement Types") gr.Markdown("### Mentions Overview (Filtered by Date)") with gr.Row(): mentions_activity_plot = gr.Plot(label="Mentions Activity Over Time") mention_sentiment_plot = gr.Plot(label="Mention Sentiment Distribution") gr.Markdown("### Follower Dynamics") with gr.Row(): followers_count_plot = gr.Plot(label="Followers Count Over Time (e.g., Monthly Gains)") followers_growth_rate_plot = gr.Plot(label="Followers Growth Rate (e.g., Monthly Gains)") gr.Markdown("### Follower Demographics (Overall Latest Data)") with gr.Row(): followers_by_location_plot = gr.Plot(label="Followers by Location") followers_by_role_plot = gr.Plot(label="Followers by Role (Function)") with gr.Row(): followers_by_industry_plot = gr.Plot(label="Followers by Industry") followers_by_seniority_plot = gr.Plot(label="Followers by Seniority") gr.Markdown("### Post Performance Insights (Filtered by Date)") with gr.Row(): engagement_rate_plot = gr.Plot(label="Engagement Rate Over Time") reach_over_time_plot = gr.Plot(label="Reach Over Time (Clicks)") # This was originally in its own row with gr.Row(): # Moved impressions to be paired with reach if desired, or keep separate impressions_over_time_plot = gr.Plot(label="Impressions Over Time") # New plots will start here, keeping 2 per row likes_over_time_plot = gr.Plot(label="Reactions (Likes) Over Time") gr.Markdown("### Detailed Post Engagement Over Time (Filtered by Date)") with gr.Row(): clicks_over_time_plot = gr.Plot(label="Clicks Over Time") shares_over_time_plot = gr.Plot(label="Shares Over Time") with gr.Row(): comments_over_time_plot = gr.Plot(label="Comments Over Time") # For the 5th new plot, "Breakdown of Comments by Sentiment" # It will be alone in this row, or you can add another plot next to it later. comments_sentiment_plot = gr.Plot(label="Breakdown of Comments by Sentiment") analytics_plot_outputs = [ analytics_status_md, posts_activity_plot, engagement_type_plot, mentions_activity_plot, mention_sentiment_plot, followers_count_plot, followers_growth_rate_plot, followers_by_location_plot, followers_by_role_plot, followers_by_industry_plot, followers_by_seniority_plot, engagement_rate_plot, reach_over_time_plot, impressions_over_time_plot, # --- Add new plot components to the output list in the correct order --- likes_over_time_plot, clicks_over_time_plot, shares_over_time_plot, comments_over_time_plot, comments_sentiment_plot ] apply_filter_btn.click( fn=update_analytics_plots, inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker], outputs=analytics_plot_outputs, show_progress="full" ) # Also update analytics after sync sync_click_event.then( fn=update_analytics_plots, inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker], outputs=analytics_plot_outputs, show_progress="full" ) with gr.TabItem("3️⃣ Mentions", id="tab_mentions"): refresh_mentions_display_btn = gr.Button("🔄 Refresh Mentions Display (from local data)", variant="secondary") mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.") mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution") refresh_mentions_display_btn.click( fn=run_mentions_tab_display, inputs=[token_state], outputs=[mentions_html, mentions_sentiment_dist_plot], show_progress="full" ) with gr.TabItem("4️⃣ Follower Stats", id="tab_follower_stats"): refresh_follower_stats_btn = gr.Button("🔄 Refresh Follower Stats Display (from local data)", variant="secondary") follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.") with gr.Row(): fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains") with gr.Row(): fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)") fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)") refresh_follower_stats_btn.click( fn=run_follower_stats_tab_display, inputs=[token_state], outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry], show_progress="full" ) if __name__ == "__main__": if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set.") if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \ not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \ not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR): logging.warning("WARNING: Bubble environment variables not fully set.") try: logging.info(f"Matplotlib version: {matplotlib.__version__} found. Backend: {matplotlib.get_backend()}") except ImportError: logging.error("Matplotlib is not installed. Plots will not be generated.") app.launch(server_name="0.0.0.0", server_port=7860, debug=True)