# -*- coding: utf-8 -*- import gradio as gr import json import os # Added to access environment variables # Assuming these custom modules exist in your project directory or Python path from Data_Fetching_and_Rendering import fetch_and_render_dashboard from analytics_fetch_and_rendering import fetch_and_render_analytics from mentions_dashboard import generate_mentions_dashboard # Import the function from your utils file from gradio_utils import get_url_user_token # Import the Bubble API call function (ensure filename matches: Bubble_API_Calls.py) from Bubble_API_Calls import fetch_linkedin_token_from_bubble # --- Session State dependent functions --- def check_token_status(current_token_state): """Checks if a token exists in the session state.""" # Only check for the presence of the token if current_token_state and current_token_state.get("token"): return "✅ Token available" return "❌ Token not available" # Changed message for clarity # --- Function to process and store token from Bubble --- def process_and_store_bubble_token(url_user_token_str, current_token_state): """ Fetches token from Bubble, loads client_id from env, updates session state, and returns UI update values. Args: url_user_token_str: The token string extracted from the URL. current_token_state: The current session state for the token. Returns: Tuple: (bubble_api_status_msg, overall_token_status_msg, updated_token_state) """ bubble_api_status_msg = "Waiting for URL token..." # Initialize new_token_state, removing the 'status' field new_token_state = current_token_state.copy() if current_token_state else {"token": None, "client_id": None} new_token_state["token"] = None # Assume no token until successfully fetched # Attempt to load Linkedin_client_id from environment variable linkedin_client_id_from_env = os.environ.get("Linkedin_client_id") if not linkedin_client_id_from_env: bubble_api_status_msg = "❌ CRITICAL ERROR: 'Linkedin_client_id' environment variable not set." print(bubble_api_status_msg) new_token_state["client_id"] = "ENV VAR MISSING" # Indicate error in state # Return values: bubble_api_status, overall_token_status, new_token_state return check_token_status(new_token_state), new_token_state # Store client_id from env in the state, regardless of token outcome (if env var exists) new_token_state["client_id"] = linkedin_client_id_from_env if not url_user_token_str or "not found" in url_user_token_str or "Could not access" in url_user_token_str: bubble_api_status_msg = f"ℹ️ No valid user token from URL to query Bubble. ({url_user_token_str})" # Client ID is known (if env var was found), but no token to fetch return check_token_status(new_token_state), new_token_state print(f"Attempting to fetch token from Bubble with user token: {url_user_token_str}") # Changed "state" to "user token" for clarity parsed_token_dict = fetch_linkedin_token_from_bubble(url_user_token_str) if parsed_token_dict and isinstance(parsed_token_dict, dict) and "access_token" in parsed_token_dict: new_token_state["token"] = parsed_token_dict # Store the actual token bubble_api_status_msg = f"✅ Token successfully fetched from Bubble for user token: {url_user_token_str}. Client ID loaded." print(bubble_api_status_msg) else: bubble_api_status_msg = f"❌ Failed to fetch a valid token from Bubble for user token: {url_user_token_str}. Check console logs from Bubble_API_Calls.py." print(bubble_api_status_msg) # Token fetch failed, token remains None. Client_id is already set if env var was found. # Return values: bubble_api_status, overall_token_status, new_token_state return check_token_status(new_token_state), new_token_state # --- Guarded fetch functions (now use token_state, checking only for token presence) --- def guarded_fetch_dashboard(current_token_state): # Check only for the presence of the token if not (current_token_state and current_token_state.get("token")): return "

❌ Access denied. No token available.

" html = fetch_and_render_dashboard( current_token_state.get("client_id"), # Use .get for safety current_token_state.get("token") ) return html def guarded_fetch_analytics(current_token_state): # Check only for the presence of the token if not (current_token_state and current_token_state.get("token")): return ( "

❌ Access denied. No token available.

", None, None, None, None, None, None, None ) client_id = current_token_state.get("client_id") token_data = current_token_state.get("token") count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics = fetch_and_render_analytics( client_id, token_data ) return count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics def run_mentions_and_load(current_token_state): # Check only for the presence of the token if not (current_token_state and current_token_state.get("token")): return ("

❌ Access denied. No token available.

", None) html, fig = generate_mentions_dashboard( current_token_state.get("client_id"), current_token_state.get("token") ) return html, fig # --- Build the Gradio UI --- with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="LinkedIn Post Viewer & Analytics") as app: # Modified token_state: removed 'status', client_id will be populated from env token_state = gr.State(value={"token": None, "client_id": None}) gr.Markdown("# 🚀 LinkedIn Organization Post Viewer & Analytics") gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.") url_user_token_display = gr.Textbox( label="User Token (from URL - Hidden)", interactive=False, placeholder="Attempting to load from URL...", visible=False # Kept hidden as per original logic ) status_box = gr.Textbox(label="Overall Token Status", interactive=False, placeholder="Waiting for token check...") # Added placeholder app.load( fn=get_url_user_token, inputs=None, outputs=[url_user_token_display] ) # Modified outputs for process_and_store_bubble_token url_user_token_display.change( fn=process_and_store_bubble_token, inputs=[url_user_token_display, token_state], outputs=[status_box, token_state] # Removed client_display ) # app.load to initialize status_box based on initial token_state app.load(fn=check_token_status, inputs=[token_state], outputs=status_box) # Removed app.load for get_active_client_id and client_display timer = gr.Timer(5.0) timer.tick(fn=check_token_status, inputs=[token_state], outputs=status_box) # Removed timer.tick for get_active_client_id and client_display with gr.Tabs(): with gr.TabItem("1️⃣ Dashboard"): gr.Markdown("View your organization's recent posts and their engagement statistics.") fetch_dashboard_btn = gr.Button("📊 Fetch Posts & Stats", variant="primary") dashboard_html = gr.HTML(value="

Waiting for token...

") fetch_dashboard_btn.click( fn=guarded_fetch_dashboard, inputs=[token_state], outputs=[dashboard_html] ) with gr.TabItem("2️⃣ Analytics"): gr.Markdown("View follower count and monthly gains for your organization.") fetch_analytics_btn = gr.Button("📈 Fetch Follower Analytics", variant="primary") follower_count = gr.Markdown("

Waiting for token...

") with gr.Row(): follower_plot = gr.Plot(visible=True) growth_rate_plot = gr.Plot(visible=True) with gr.Row(): post_eng_rate_plot = gr.Plot(visible=True) with gr.Row(): interaction_data = gr.Plot(visible=True) with gr.Row(): eb_data = gr.Plot(visible=True) with gr.Row(): mentions_vol_data = gr.Plot(visible=True) mentions_sentiment_data = gr.Plot(visible=True) fetch_analytics_btn.click( fn=guarded_fetch_analytics, inputs=[token_state], outputs=[follower_count, follower_plot, growth_rate_plot, post_eng_rate_plot, interaction_data, eb_data, mentions_vol_data, mentions_sentiment_data] ) with gr.TabItem("3️⃣ Mentions"): gr.Markdown("Analyze sentiment of recent posts that mention your organization.") fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary") mentions_html = gr.HTML(value="

Waiting for token...

") mentions_plot = gr.Plot(visible=True) fetch_mentions_btn.click( fn=run_mentions_and_load, inputs=[token_state], outputs=[mentions_html, mentions_plot] ) if __name__ == "__main__": # Ensure the Linkedin_client_id environment variable is set before launching. # You might want to add a check here and print a warning if it's not set. if not os.environ.get("Linkedin_client_id"): print("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly.") app.launch(server_name="0.0.0.0", server_port=7860, share=True)