import gradio as gr import pandas as pd import os import logging import matplotlib matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio import matplotlib.pyplot as plt # No longer need timedelta here if all date logic is in analytics_data_processing # from datetime import datetime, timedelta # --- Module Imports --- from gradio_utils import get_url_user_token # Functions from newly created/refactored modules from config import ( LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR ) from state_manager import process_and_store_bubble_token from sync_logic import sync_all_linkedin_data_orchestrator from ui_generators import ( display_main_dashboard, run_mentions_tab_display, run_follower_stats_tab_display ) import analytics_plot_generators # NEW: Import for data processing functions import analytics_data_processing # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # --- Analytics Tab: Plot Update Function --- def update_analytics_plots(token_state_value, date_filter_option, custom_start_date, custom_end_date): """ Prepares analytics data using external processing function and then generates plots. """ logging.info(f"Updating analytics plots. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}") if not token_state_value or not token_state_value.get("token"): message = "❌ Access denied. No token. Cannot generate analytics." logging.warning(message) return message, None, None, None, None, None # --- Prepare Data (Moved to analytics_data_processing) --- try: filtered_posts_df, filtered_mentions_df, follower_stats_df, start_dt_for_msg, end_dt_for_msg = \ analytics_data_processing.prepare_filtered_analytics_data( token_state_value, date_filter_option, custom_start_date, custom_end_date ) except Exception as e: error_msg = f"❌ Error preparing analytics data: {e}" logging.error(error_msg, exc_info=True) return error_msg, None, None, None, None, None # Date column names (still needed for plot generators) date_column_posts = token_state_value.get("config_date_col_posts", "published_at") date_column_mentions = token_state_value.get("config_date_col_mentions", "date") date_column_followers = token_state_value.get("config_date_col_followers", "date") logging.info(f"Data for plotting - Filtered posts: {len(filtered_posts_df)} rows, Filtered Mentions: {len(filtered_mentions_df)} rows.") logging.info(f"Follower stats (unfiltered by global range): {len(follower_stats_df)} rows.") # --- Generate Plots --- try: plot_posts_activity = analytics_plot_generators.generate_posts_activity_plot(filtered_posts_df, date_column_posts) plot_engagement_type = analytics_plot_generators.generate_engagement_type_plot(filtered_posts_df) plot_mentions_activity = analytics_plot_generators.generate_mentions_activity_plot(filtered_mentions_df, date_column_mentions) plot_mention_sentiment = analytics_plot_generators.generate_mention_sentiment_plot(filtered_mentions_df) plot_follower_growth = analytics_plot_generators.generate_follower_growth_plot(follower_stats_df, date_column_followers) message = f"📊 Analytics updated for period: {date_filter_option}" if date_filter_option == "Custom Range": s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any" e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any" message += f" (From: {s_display} To: {e_display})" num_plots_generated = sum(1 for p in [plot_posts_activity, plot_engagement_type, plot_mentions_activity, plot_mention_sentiment, plot_follower_growth] if p is not None) logging.info(f"Successfully generated {num_plots_generated} plots.") return message, plot_posts_activity, plot_engagement_type, plot_mentions_activity, plot_mention_sentiment, plot_follower_growth except Exception as e: error_msg = f"❌ Error generating analytics plots: {e}" logging.error(error_msg, exc_info=True) return error_msg, None, None, None, None, None # --- Gradio UI Blocks --- with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="LinkedIn Organization Dashboard") as app: token_state = gr.State(value={ "token": None, "client_id": None, "org_urn": None, "bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0, "bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(), "url_user_token_temp_storage": None, "config_date_col_posts": "published_at", "config_date_col_mentions": "date", "config_date_col_followers": "date" }) gr.Markdown("# 🚀 LinkedIn Organization Dashboard") url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False) status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...") org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False) app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False) def initial_load_sequence(url_token, org_urn_val, current_state): logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}") status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state) dashboard_content = display_main_dashboard(new_state) return status_msg, new_state, btn_update, dashboard_content with gr.Tabs() as tabs: with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"): gr.Markdown("System checks for existing data from Bubble. The 'Sync' button activates if new data needs to be fetched from LinkedIn based on the last sync times and data availability.") sync_data_btn = gr.Button("🔄 Sync LinkedIn Data", variant="primary", visible=False, interactive=False) sync_status_html_output = gr.HTML("

Sync status will appear here.

") dashboard_display_html = gr.HTML("

Dashboard loading...

") org_urn_display.change( fn=initial_load_sequence, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn, dashboard_display_html], show_progress="full" ) sync_click_event = sync_data_btn.click( fn=sync_all_linkedin_data_orchestrator, inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full" ).then( fn=process_and_store_bubble_token, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn], show_progress=False ).then( fn=display_main_dashboard, inputs=[token_state], outputs=[dashboard_display_html], show_progress=False ) with gr.TabItem("2️⃣ Analytics", id="tab_analytics"): gr.Markdown("## 📈 LinkedIn Performance Analytics") gr.Markdown("Select a date range to filter Posts and Mentions analytics. Follower analytics show overall trends and are not affected by this date filter.") analytics_status_md = gr.Markdown("Analytics status will appear here...") with gr.Row(): date_filter_selector = gr.Radio( ["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"], label="Select Date Range (for Posts & Mentions)", value="Last 30 Days" ) custom_start_date_picker = gr.DatePicker(label="Start Date (Custom)", visible=False) custom_end_date_picker = gr.DatePicker(label="End Date (Custom)", visible=False) apply_filter_btn = gr.Button("🔍 Apply Filter & Refresh Analytics", variant="primary") def toggle_custom_date_pickers(selection): return gr.update(visible=selection == "Custom Range"), gr.update(visible=selection == "Custom Range") date_filter_selector.change( fn=toggle_custom_date_pickers, inputs=[date_filter_selector], outputs=[custom_start_date_picker, custom_end_date_picker] ) gr.Markdown("### Posts & Engagement Overview (Filtered by Date)") with gr.Row(): posts_activity_plot = gr.Plot(label="Posts Activity Over Time") engagement_type_plot = gr.Plot(label="Post Engagement Types") gr.Markdown("### Mentions Overview (Filtered by Date)") with gr.Row(): mentions_activity_plot = gr.Plot(label="Mentions Activity Over Time") mention_sentiment_plot = gr.Plot(label="Mention Sentiment Distribution") gr.Markdown("### Follower Overview (Not Filtered by Date Range Selector)") with gr.Row(): follower_growth_plot = gr.Plot(label="Follower Growth Over Time") apply_filter_btn.click( fn=update_analytics_plots, inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker], outputs=[analytics_status_md, posts_activity_plot, engagement_type_plot, mentions_activity_plot, mention_sentiment_plot, follower_growth_plot], show_progress="full" ) sync_click_event.then( fn=update_analytics_plots, inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker], outputs=[analytics_status_md, posts_activity_plot, engagement_type_plot, mentions_activity_plot, mention_sentiment_plot, follower_growth_plot], show_progress="full" ) with gr.TabItem("3️⃣ Mentions", id="tab_mentions"): refresh_mentions_display_btn = gr.Button("🔄 Refresh Mentions Display (from local data)", variant="secondary") mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.") mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution") refresh_mentions_display_btn.click( fn=run_mentions_tab_display, inputs=[token_state], outputs=[mentions_html, mentions_sentiment_dist_plot], show_progress="full" ) with gr.TabItem("4️⃣ Follower Stats", id="tab_follower_stats"): refresh_follower_stats_btn = gr.Button("🔄 Refresh Follower Stats Display (from local data)", variant="secondary") follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.") with gr.Row(): fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains") with gr.Row(): fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)") fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)") refresh_follower_stats_btn.click( fn=run_follower_stats_tab_display, inputs=[token_state], outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry], show_progress="full" ) if __name__ == "__main__": if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set.") if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \ not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \ not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR): logging.warning("WARNING: Bubble environment variables not fully set.") try: logging.info(f"Matplotlib version: {matplotlib.__version__} found. Backend: {matplotlib.get_backend()}") except ImportError: logging.error("Matplotlib is not installed. Plots will not be generated.") app.launch(server_name="0.0.0.0", server_port=7860, debug=True)