Spaces:
Sleeping
Sleeping
FIrst commit
Browse files- .gitignore +2 -0
- app.py +74 -0
- sandbox.ipynb +37 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
.ipynb_checkpoints/sandbox-checkpoint.ipynb
|
app.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from codecarbon import EmissionsTracker
|
| 3 |
+
|
| 4 |
+
# Import necessary libraries
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 7 |
+
from sklearn.metrics import classification_report, accuracy_score
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
# Let's create a sample dataset (you can replace this with your own data)
|
| 12 |
+
def create_sample_data():
|
| 13 |
+
np.random.seed(42)
|
| 14 |
+
n_samples = 10000
|
| 15 |
+
|
| 16 |
+
# Create features (X)
|
| 17 |
+
X = np.random.randn(n_samples, 4) # 4 features
|
| 18 |
+
|
| 19 |
+
# Create target (y) - binary classification
|
| 20 |
+
y = (X[:, 0] + X[:, 1] + X[:, 2] > 0).astype(int)
|
| 21 |
+
|
| 22 |
+
return X, y
|
| 23 |
+
|
| 24 |
+
# Get data (replace this with your data loading code)
|
| 25 |
+
X, y = create_sample_data()
|
| 26 |
+
tracker = EmissionsTracker()
|
| 27 |
+
|
| 28 |
+
def submit(username):
|
| 29 |
+
|
| 30 |
+
tracker.start()
|
| 31 |
+
|
| 32 |
+
tracker.start_task("train_model")
|
| 33 |
+
# Split the data into training and testing sets
|
| 34 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 35 |
+
X, y, test_size=0.2, random_state=42
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# Initialize the model
|
| 39 |
+
rf_model = RandomForestClassifier(
|
| 40 |
+
n_estimators=1000,
|
| 41 |
+
max_depth=5,
|
| 42 |
+
random_state=42
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Train the model
|
| 46 |
+
print("Training the model...")
|
| 47 |
+
rf_model.fit(X_train, y_train)
|
| 48 |
+
|
| 49 |
+
training_emissions = tracker.stop_task()
|
| 50 |
+
|
| 51 |
+
tracker.start_task("inference")
|
| 52 |
+
rf_model.predict(X_test)
|
| 53 |
+
inference_emissions = tracker.stop_task()
|
| 54 |
+
|
| 55 |
+
emissions = inference_emissions.emissions
|
| 56 |
+
energy = inference_emissions.energy_consumed
|
| 57 |
+
|
| 58 |
+
return [emissions, energy]
|
| 59 |
+
|
| 60 |
+
# Update the interface configuration
|
| 61 |
+
demo = gr.Interface(
|
| 62 |
+
fn=submit,
|
| 63 |
+
inputs=gr.Textbox(label="Username"),
|
| 64 |
+
outputs=[
|
| 65 |
+
gr.Number(label="Emissions (kgCO2eq)", precision=6),
|
| 66 |
+
gr.Number(label="Energy Consumed (kWh)", precision=6)
|
| 67 |
+
],
|
| 68 |
+
title="Carbon Emissions Tracker",
|
| 69 |
+
description="Track the carbon emissions and energy consumption of model training and inference."
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Launch the Gradio interface
|
| 73 |
+
if __name__ == "__main__":
|
| 74 |
+
demo.launch()
|
sandbox.ipynb
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "6941ccb0-6ed0-45c1-9460-8f8c0bbfc288",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"from codecarbon import EmissionsTracker\n",
|
| 11 |
+
"tracker = EmissionsTracker()\n",
|
| 12 |
+
"tracker.start()"
|
| 13 |
+
]
|
| 14 |
+
}
|
| 15 |
+
],
|
| 16 |
+
"metadata": {
|
| 17 |
+
"kernelspec": {
|
| 18 |
+
"display_name": "Python 3 (ipykernel)",
|
| 19 |
+
"language": "python",
|
| 20 |
+
"name": "python3"
|
| 21 |
+
},
|
| 22 |
+
"language_info": {
|
| 23 |
+
"codemirror_mode": {
|
| 24 |
+
"name": "ipython",
|
| 25 |
+
"version": 3
|
| 26 |
+
},
|
| 27 |
+
"file_extension": ".py",
|
| 28 |
+
"mimetype": "text/x-python",
|
| 29 |
+
"name": "python",
|
| 30 |
+
"nbconvert_exporter": "python",
|
| 31 |
+
"pygments_lexer": "ipython3",
|
| 32 |
+
"version": "3.12.4"
|
| 33 |
+
}
|
| 34 |
+
},
|
| 35 |
+
"nbformat": 4,
|
| 36 |
+
"nbformat_minor": 5
|
| 37 |
+
}
|