Spaces:
Runtime error
Runtime error
| import os | |
| from typing import Union | |
| from transformers import PretrainedConfig, PhiConfig | |
| from transformers.utils import logging | |
| logger = logging.get_logger(__name__) | |
| class LlavaPhiVisionConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a | |
| CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a | |
| configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP | |
| [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| hidden_size (`int`, *optional*, defaults to 768): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| intermediate_size (`int`, *optional*, defaults to 3072): | |
| Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
| projection_dim (`int`, *optional*, defaults to 512): | |
| Dimentionality of text and vision projection layers. | |
| num_hidden_layers (`int`, *optional*, defaults to 12): | |
| Number of hidden layers in the Transformer encoder. | |
| num_attention_heads (`int`, *optional*, defaults to 12): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| num_channels (`int`, *optional*, defaults to 3): | |
| The number of input channels. | |
| image_size (`int`, *optional*, defaults to 224): | |
| The size (resolution) of each image. | |
| patch_size (`int`, *optional*, defaults to 32): | |
| The size (resolution) of each patch. | |
| hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
| `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. | |
| layer_norm_eps (`float`, *optional*, defaults to 1e-05): | |
| The epsilon used by the layer normalization layers. | |
| attention_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| initializer_factor (`float`, *optional*, defaults to 1.0): | |
| A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
| testing). | |
| mm_vision_select_feature (`str`, *optional*, defaults to `"patch"`): | |
| The feature to select from the vision encoder output. Can be one of `"patch"` or `"cls_patch"`. | |
| mm_vision_select_layer (`int`, *optional*, defaults to `-2`): | |
| The layer to select from the vision encoder output. | |
| Example: | |
| ```python | |
| >>> from transformers import CLIPVisionConfig, CLIPVisionModel | |
| >>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration | |
| >>> configuration = CLIPVisionConfig() | |
| >>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration | |
| >>> model = CLIPVisionModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "llava_phi_clip_vision_model" | |
| def __init__( | |
| self, | |
| hidden_size=768, | |
| intermediate_size=3072, | |
| projection_dim=512, | |
| num_hidden_layers=12, | |
| num_attention_heads=12, | |
| num_channels=3, | |
| image_size=224, | |
| patch_size=32, | |
| hidden_act="quick_gelu", | |
| layer_norm_eps=1e-5, | |
| attention_dropout=0.0, | |
| initializer_range=0.02, | |
| initializer_factor=1.0, | |
| mm_vision_select_feature="patch", | |
| mm_vision_select_layer=-2, | |
| **kwargs, | |
| ): | |
| super().__init__(**kwargs) | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.projection_dim = projection_dim | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.num_channels = num_channels | |
| self.patch_size = patch_size | |
| self.image_size = image_size | |
| self.initializer_range = initializer_range | |
| self.initializer_factor = initializer_factor | |
| self.attention_dropout = attention_dropout | |
| self.layer_norm_eps = layer_norm_eps | |
| self.hidden_act = hidden_act | |
| self.mm_vision_select_feature = mm_vision_select_feature | |
| self.mm_vision_select_layer = mm_vision_select_layer | |
| def from_pretrained( | |
| cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
| ) -> "PretrainedConfig": | |
| cls._set_token_in_kwargs(kwargs) | |
| config_dict, kwargs = cls.get_config_dict( | |
| pretrained_model_name_or_path, **kwargs | |
| ) | |
| # get the vision config dict if we are loading from CLIPConfig | |
| if config_dict.get("model_type") == "llava_phi-phi": | |
| config_dict = config_dict["vision_config"] | |
| if ( | |
| "model_type" in config_dict | |
| and hasattr(cls, "model_type") | |
| and config_dict["model_type"] != cls.model_type | |
| ): | |
| logger.warning( | |
| f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
| f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
| ) | |
| return cls.from_dict(config_dict, **kwargs) | |
| class ProjectorConfig(PretrainedConfig): | |
| model_type = "llava_phi_projector" | |
| def __init__( | |
| self, mm_projector_type="linear", mm_hidden_size=768, hidden_size=2560, **kwargs | |
| ): | |
| self.mm_projector_type = mm_projector_type | |
| self.mm_hidden_size = mm_hidden_size | |
| self.hidden_size = hidden_size | |
| super().__init__(**kwargs) | |
| def from_pretrained( | |
| cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
| ) -> "PretrainedConfig": | |
| cls._set_token_in_kwargs(kwargs) | |
| config_dict, kwargs = cls.get_config_dict( | |
| pretrained_model_name_or_path, **kwargs | |
| ) | |
| # get the vision config dict if we are loading from CLIPConfig | |
| if config_dict.get("model_type") == "llava_phi-phi": | |
| config_dict = config_dict["projector_config"] | |
| if ( | |
| "model_type" in config_dict | |
| and hasattr(cls, "model_type") | |
| and config_dict["model_type"] != cls.model_type | |
| ): | |
| logger.warning( | |
| f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
| f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
| ) | |
| return cls.from_dict(config_dict, **kwargs) | |
| DEFAULT_VISUAL_CONFIG = { | |
| "vision_tower": LlavaPhiVisionConfig().to_dict(), | |
| "mm_projector": ProjectorConfig().to_dict(), | |
| } | |
| class LlavaPhiConfig(PhiConfig): | |
| model_type = "llava_phi" | |
| def __init__(self, vision_config=None, **kwargs): | |
| if vision_config is None: | |
| self.vision_config = DEFAULT_VISUAL_CONFIG | |
| else: | |
| self.vision_config = vision_config | |
| super().__init__(**kwargs) | |
| if __name__ == "__main__": | |
| print(LlavaPhiVisionConfig()) | |