File size: 3,725 Bytes
9b5b26a
 
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
5df72d6
49c86fd
 
 
 
 
9b5b26a
49c86fd
 
 
 
9b5b26a
49c86fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
49c86fd
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !

@tool
def generate_data_science_steps(process: str) -> str:
    """A tool that generates concise step-by-step instructions for a given data science process.
    
    Args:
        process: The name of the data science process (e.g., "Data Cleaning", "Feature Engineering", "Model Training").
    
    Returns:
        A concise list of steps for executing the specified process.
    """
    steps_dict = {
        "data cleaning": [
            "1. Load the dataset.",
            "2. Handle missing values (impute or remove).",
            "3. Remove duplicates.",
            "4. Fix inconsistent data types.",
            "5. Normalize/standardize data if needed."
        ],
        "feature engineering": [
            "1. Identify relevant features.",
            "2. Create new features from existing data.",
            "3. Encode categorical variables.",
            "4. Scale numerical features.",
            "5. Select the most important features."
        ],
        "model training": [
            "1. Split data into train/test sets.",
            "2. Choose an appropriate algorithm.",
            "3. Train the model on training data.",
            "4. Evaluate using validation data.",
            "5. Tune hyperparameters for better performance."
        ],
        "data visualization": [
            "1. Choose the right visualization type.",
            "2. Load and preprocess data.",
            "3. Use libraries like Matplotlib or Seaborn.",
            "4. Label axes and titles for clarity.",
            "5. Interpret insights from the visuals."
        ]
    }
    
    process = process.lower()
    if process in steps_dict:
        return "\n".join(steps_dict[process])
    else:
        return f"Sorry, I don't have predefined steps for '{process}'. Try another data science process."


@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer,generate_data_science_steps], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()