Spaces:
Running
Running
Upload all space files
Browse files- README.md +185 -12
- app.py +255 -0
- female_embedding.pt +3 -0
- male_embedding.pt +3 -0
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,12 +1,185 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Moroccan Darija Text-to-Speech Model
|
2 |
+
|
3 |
+
This project implements a Text-to-Speech (TTS) system for Moroccan Darija using the SpeechT5 architecture. It's fine-tuned on the DODa-audio-dataset to generate natural-sounding Darija speech from text input.
|
4 |
+
|
5 |
+
## Table of Contents
|
6 |
+
- [Dataset Overview](#dataset-overview)
|
7 |
+
- [Project Structure](#project-structure)
|
8 |
+
- [Installation](#installation)
|
9 |
+
- [Model Training](#model-training)
|
10 |
+
- [Inference](#inference)
|
11 |
+
- [Gradio Demo](#gradio-demo)
|
12 |
+
- [Project Features](#project-features)
|
13 |
+
- [Potential Applications](#potential-applications)
|
14 |
+
- [Limitations and Future Work](#limitations-and-future-work)
|
15 |
+
- [License](#license)
|
16 |
+
|
17 |
+
## Dataset Overview
|
18 |
+
|
19 |
+
The **DODa audio dataset** contains 12,743 sentences recorded by 7 contributors (4 females, 3 males). Key characteristics:
|
20 |
+
|
21 |
+
- Audio recordings standardized at 16kHz sample rate
|
22 |
+
- Multiple text representations (Latin script, Arabic script, and English translations)
|
23 |
+
- High-quality recordings with manual corrections
|
24 |
+
|
25 |
+
### Dataset Structure
|
26 |
+
| Column Name | Description |
|
27 |
+
|-------------|-------------|
|
28 |
+
| **audio** | Speech recordings for Darija sentences |
|
29 |
+
| **darija_Ltn** | Darija sentences using Latin letters |
|
30 |
+
| **darija_Arab_new** | Corrected Darija sentences using Arabic script |
|
31 |
+
| **english** | English translation of Darija sentences |
|
32 |
+
| **darija_Arab_old** | Original (uncorrected) Darija sentences in Arabic script |
|
33 |
+
|
34 |
+
### Speaker Distribution
|
35 |
+
The dataset includes recordings from 7 speakers (4 females, 3 males) with the following distribution:
|
36 |
+
```
|
37 |
+
Samples 0-999 -> Female 1
|
38 |
+
Samples 1000-1999 -> Male 3
|
39 |
+
Samples 2000-2730 -> Female 2
|
40 |
+
Samples 2731-2800 -> Male 1
|
41 |
+
Samples 2801-3999 -> Male 2
|
42 |
+
Samples 4000-4999 -> Male 1
|
43 |
+
Samples 5000-5999 -> Female 3
|
44 |
+
Samples 6000-6999 -> Male 1
|
45 |
+
Samples 7000-7999 -> Female 4
|
46 |
+
Samples 8000-8999 -> Female 1
|
47 |
+
Samples 9000-9999 -> Male 2
|
48 |
+
Samples 10000-11999 -> Male 1
|
49 |
+
Samples 12000-12350 -> Male 2
|
50 |
+
Samples 12351-12742 -> Male 1
|
51 |
+
```
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
## Installation
|
56 |
+
|
57 |
+
To set up the project environment:
|
58 |
+
|
59 |
+
```bash
|
60 |
+
# Clone the repository
|
61 |
+
git clone https://github.com/yourusername/darija-tts.git
|
62 |
+
cd darija-tts
|
63 |
+
|
64 |
+
# Create a virtual environment (optional but recommended)
|
65 |
+
python -m venv venv
|
66 |
+
source venv/bin/activate # On Windows: venv\Scriptsctivate
|
67 |
+
|
68 |
+
# Install dependencies
|
69 |
+
pip install -r requirements.txt
|
70 |
+
```
|
71 |
+
|
72 |
+
## Model Training
|
73 |
+
|
74 |
+
The model training process involves:
|
75 |
+
|
76 |
+
1. **Data Loading**: Loading the DODa audio dataset from Hugging Face
|
77 |
+
2. **Data Preprocessing**: Normalizing text and extracting speaker embeddings
|
78 |
+
3. **Model Setup**: Configuring the SpeechT5 model for Darija TTS
|
79 |
+
4. **Training**: Fine-tuning the model using the prepared dataset
|
80 |
+
|
81 |
+
To run the training:
|
82 |
+
|
83 |
+
```bash
|
84 |
+
# Open the Jupyter notebook
|
85 |
+
jupyter notebook notebooks/train_darija_tts.ipynb
|
86 |
+
```
|
87 |
+
|
88 |
+
Key training parameters:
|
89 |
+
- Learning rate: 1e-4
|
90 |
+
- Batch size: 4 (with gradient accumulation: 8)
|
91 |
+
- Training steps: 1000
|
92 |
+
- Evaluation frequency: Every 100 steps
|
93 |
+
|
94 |
+
## Inference
|
95 |
+
|
96 |
+
To generate speech from text after training:
|
97 |
+
|
98 |
+
```python
|
99 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
100 |
+
import torch
|
101 |
+
import soundfile as sf
|
102 |
+
|
103 |
+
# Load models
|
104 |
+
model_path = "./models/speecht5_finetuned_Darija"
|
105 |
+
processor = SpeechT5Processor.from_pretrained(model_path)
|
106 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(model_path)
|
107 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
108 |
+
|
109 |
+
# Load speaker embedding
|
110 |
+
speaker_embedding = torch.load("./data/speaker_embeddings/female_embedding.pt")
|
111 |
+
|
112 |
+
# Normalize and process input text
|
113 |
+
text = "Salam, kifach nta lyoum?"
|
114 |
+
inputs = processor(text=text, return_tensors="pt")
|
115 |
+
|
116 |
+
# Generate speech
|
117 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
|
118 |
+
|
119 |
+
# Save audio file
|
120 |
+
sf.write("output.wav", speech.numpy(), 16000)
|
121 |
+
```
|
122 |
+
|
123 |
+
## Gradio Demo
|
124 |
+
|
125 |
+
The project includes a Gradio demo that provides a user-friendly interface for text-to-speech conversion:
|
126 |
+
|
127 |
+
```bash
|
128 |
+
# Run the demo locally
|
129 |
+
cd demo
|
130 |
+
python app.py
|
131 |
+
```
|
132 |
+
|
133 |
+
The demo features:
|
134 |
+
- Text input field for Darija text (Latin script)
|
135 |
+
- Voice selection (male/female)
|
136 |
+
- Speech speed adjustment
|
137 |
+
- Audio playback of generated speech
|
138 |
+
|
139 |
+
### Deploying to Hugging Face Spaces
|
140 |
+
|
141 |
+
To deploy the demo to Hugging Face Spaces:
|
142 |
+
|
143 |
+
1. Push your model to the Hugging Face Hub
|
144 |
+
2. Create a new Space with the Gradio SDK
|
145 |
+
3. Upload the demo files to the Space
|
146 |
+
|
147 |
+
See the notebook for detailed deployment instructions.
|
148 |
+
|
149 |
+
## Project Features
|
150 |
+
|
151 |
+
- **Multi-Speaker TTS**: Generate speech in both male and female voices
|
152 |
+
- **Voice Cloning**: Utilizes speaker embeddings for voice characteristics preservation
|
153 |
+
- **Speed Control**: Adjust the speech rate as needed
|
154 |
+
- **Text Normalization**: Handles various text inputs through proper normalization
|
155 |
+
|
156 |
+
## Potential Applications
|
157 |
+
|
158 |
+
- **Voice Assistants**: Build voice assistants that speak Moroccan Darija
|
159 |
+
- **Accessibility Tools**: Create tools for people with visual impairments
|
160 |
+
- **Language Learning**: Develop applications for learning Darija pronunciation
|
161 |
+
- **Content Creation**: Generate voiceovers for videos or audio content
|
162 |
+
- **Public Announcements**: Create automated announcement systems in Darija
|
163 |
+
|
164 |
+
## Limitations and Future Work
|
165 |
+
|
166 |
+
Current limitations:
|
167 |
+
- The model may struggle with code-switching between Darija and other languages
|
168 |
+
- Pronunciation of certain loanwords might be inconsistent
|
169 |
+
- Limited emotional range in the generated speech
|
170 |
+
|
171 |
+
Future improvements:
|
172 |
+
- Fine-tune with more diverse speech data
|
173 |
+
- Implement emotion control for expressive speech
|
174 |
+
- Add support for Arabic script input
|
175 |
+
- Develop a multilingual version supporting Darija, Arabic, and French
|
176 |
+
|
177 |
+
## License
|
178 |
+
|
179 |
+
This project is released under the MIT License. The DODa audio dataset is also available under the MIT License.
|
180 |
+
|
181 |
+
## Acknowledgments
|
182 |
+
|
183 |
+
- The [DODa audio dataset](https://huggingface.co/datasets/atlasia/DODa-audio-dataset) creators
|
184 |
+
- Hugging Face for the Transformers library and model hosting
|
185 |
+
- Microsoft Research for the SpeechT5 model architecture
|
app.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import soundfile as sf
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
7 |
+
from speechbrain.pretrained import EncoderClassifier
|
8 |
+
|
9 |
+
# Define paths and device
|
10 |
+
model_path = "HAMMALE/speecht5-darija" # Path to your model on HF Hub
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
print(f"Using device: {device}")
|
13 |
+
|
14 |
+
# Load models
|
15 |
+
processor = SpeechT5Processor.from_pretrained(model_path)
|
16 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(model_path).to(device)
|
17 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
18 |
+
|
19 |
+
# Load speaker embedding model
|
20 |
+
speaker_model = EncoderClassifier.from_hparams(
|
21 |
+
source="speechbrain/spkrec-xvect-voxceleb",
|
22 |
+
run_opts={"device": device},
|
23 |
+
savedir=os.path.join("/tmp", "spkrec-xvect-voxceleb"),
|
24 |
+
)
|
25 |
+
|
26 |
+
# Load pre-computed speaker embeddings
|
27 |
+
male_embedding = torch.load("male_embedding.pt") if os.path.exists("male_embedding.pt") else torch.randn(1, 512)
|
28 |
+
female_embedding = torch.load("female_embedding.pt") if os.path.exists("female_embedding.pt") else torch.randn(1, 512)
|
29 |
+
|
30 |
+
# Text normalization function
|
31 |
+
def normalize_text(text):
|
32 |
+
"""Normalize text for TTS processing"""
|
33 |
+
text = text.lower()
|
34 |
+
# Keep letters, numbers, spaces and apostrophes - fixed regex
|
35 |
+
text = re.sub(r'[^\w\s\'\u0600-\u06FF]', '', text)
|
36 |
+
text = ' '.join(text.split())
|
37 |
+
return text
|
38 |
+
|
39 |
+
# Function to synthesize speech
|
40 |
+
def synthesize_speech(text, voice_type="male", speed=1.0):
|
41 |
+
"""Generate speech from text using the specified voice type"""
|
42 |
+
try:
|
43 |
+
# Select speaker embedding based on voice type
|
44 |
+
if voice_type == "male":
|
45 |
+
speaker_embeddings = male_embedding.to(device)
|
46 |
+
else:
|
47 |
+
speaker_embeddings = female_embedding.to(device)
|
48 |
+
|
49 |
+
# Normalize and tokenize input text
|
50 |
+
normalized_text = normalize_text(text)
|
51 |
+
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
|
52 |
+
|
53 |
+
# Generate speech
|
54 |
+
with torch.no_grad():
|
55 |
+
speech = model.generate_speech(
|
56 |
+
inputs["input_ids"],
|
57 |
+
speaker_embeddings,
|
58 |
+
vocoder=vocoder
|
59 |
+
)
|
60 |
+
|
61 |
+
# Convert to numpy array and adjust speed if needed
|
62 |
+
speech_np = speech.cpu().numpy()
|
63 |
+
|
64 |
+
# Apply speed adjustment (simple resampling)
|
65 |
+
if speed != 1.0:
|
66 |
+
# This is a simple approach - for production use a proper resampling library
|
67 |
+
import numpy as np
|
68 |
+
from scipy import signal
|
69 |
+
sample_rate = 16000
|
70 |
+
new_length = int(len(speech_np) / speed)
|
71 |
+
speech_np = signal.resample(speech_np, new_length)
|
72 |
+
|
73 |
+
# Save temporary audio file
|
74 |
+
output_file = "output_speech.wav"
|
75 |
+
sf.write(output_file, speech_np, 16000)
|
76 |
+
|
77 |
+
return output_file, None
|
78 |
+
|
79 |
+
except Exception as e:
|
80 |
+
return None, f"Error generating speech: {str(e)}"
|
81 |
+
|
82 |
+
# Gradio imports need to be added
|
83 |
+
import gradio as gr
|
84 |
+
|
85 |
+
# Custom CSS for better design
|
86 |
+
custom_css = """
|
87 |
+
.gradio-container {
|
88 |
+
font-family: 'Poppins', 'Arial', sans-serif;
|
89 |
+
max-width: 750px;
|
90 |
+
margin: auto;
|
91 |
+
}
|
92 |
+
|
93 |
+
.main-header {
|
94 |
+
background: linear-gradient(90deg, #c31432, #240b36);
|
95 |
+
color: white;
|
96 |
+
padding: 1.5em;
|
97 |
+
border-radius: 10px;
|
98 |
+
text-align: center;
|
99 |
+
margin-bottom: 1em;
|
100 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
101 |
+
}
|
102 |
+
|
103 |
+
.main-header h1 {
|
104 |
+
font-size: 2.2em;
|
105 |
+
margin-bottom: 0.3em;
|
106 |
+
}
|
107 |
+
|
108 |
+
.main-header p {
|
109 |
+
font-size: 1.1em;
|
110 |
+
opacity: 0.9;
|
111 |
+
}
|
112 |
+
|
113 |
+
footer {
|
114 |
+
text-align: center;
|
115 |
+
margin-top: 2em;
|
116 |
+
color: #555;
|
117 |
+
font-size: 0.9em;
|
118 |
+
}
|
119 |
+
|
120 |
+
.flag-icon {
|
121 |
+
width: 24px;
|
122 |
+
height: 24px;
|
123 |
+
vertical-align: middle;
|
124 |
+
margin-right: 8px;
|
125 |
+
}
|
126 |
+
|
127 |
+
.example-header {
|
128 |
+
font-weight: bold;
|
129 |
+
color: #c31432;
|
130 |
+
margin-top: 1em;
|
131 |
+
}
|
132 |
+
|
133 |
+
.info-box {
|
134 |
+
background-color: #f9f9f9;
|
135 |
+
border-left: 4px solid #c31432;
|
136 |
+
padding: 1em;
|
137 |
+
margin: 1em 0;
|
138 |
+
border-radius: 5px;
|
139 |
+
}
|
140 |
+
|
141 |
+
.voice-selector {
|
142 |
+
display: flex;
|
143 |
+
justify-content: center;
|
144 |
+
gap: 20px;
|
145 |
+
margin: 10px 0;
|
146 |
+
}
|
147 |
+
|
148 |
+
.voice-option {
|
149 |
+
border: 2px solid #ddd;
|
150 |
+
border-radius: 10px;
|
151 |
+
padding: 10px 15px;
|
152 |
+
transition: all 0.3s ease;
|
153 |
+
cursor: pointer;
|
154 |
+
}
|
155 |
+
|
156 |
+
.voice-option.selected {
|
157 |
+
border-color: #c31432;
|
158 |
+
background-color: #fff5f5;
|
159 |
+
}
|
160 |
+
|
161 |
+
.slider-container {
|
162 |
+
margin: 20px 0;
|
163 |
+
}
|
164 |
+
"""
|
165 |
+
|
166 |
+
# Create Gradio interface with improved design
|
167 |
+
with gr.Blocks(css=custom_css) as demo:
|
168 |
+
gr.HTML(
|
169 |
+
"""
|
170 |
+
<div class="main-header">
|
171 |
+
<h1>🇲🇦 Moroccan Darija Text-to-Speech 🎧</h1>
|
172 |
+
<p>Convert Moroccan Arabic (Darija) text into natural-sounding speech</p>
|
173 |
+
</div>
|
174 |
+
"""
|
175 |
+
)
|
176 |
+
|
177 |
+
with gr.Row():
|
178 |
+
with gr.Column():
|
179 |
+
gr.HTML(
|
180 |
+
"""
|
181 |
+
<div class="info-box">
|
182 |
+
<p>This model was fine-tuned on the DODa audio dataset to produce high-quality
|
183 |
+
Darija speech from text input. You can adjust the voice and speed below.</p>
|
184 |
+
</div>
|
185 |
+
"""
|
186 |
+
)
|
187 |
+
|
188 |
+
text_input = gr.Textbox(
|
189 |
+
label="Enter Darija Text",
|
190 |
+
placeholder="Kteb chi jomla b darija hna...",
|
191 |
+
lines=3
|
192 |
+
)
|
193 |
+
|
194 |
+
with gr.Row():
|
195 |
+
voice_type = gr.Radio(
|
196 |
+
["male", "female"],
|
197 |
+
label="Voice Type",
|
198 |
+
value="male"
|
199 |
+
)
|
200 |
+
|
201 |
+
speed = gr.Slider(
|
202 |
+
minimum=0.5,
|
203 |
+
maximum=2.0,
|
204 |
+
value=1.0,
|
205 |
+
step=0.1,
|
206 |
+
label="Speech Speed"
|
207 |
+
)
|
208 |
+
|
209 |
+
generate_btn = gr.Button("Generate Speech", variant="primary")
|
210 |
+
|
211 |
+
gr.HTML(
|
212 |
+
"""
|
213 |
+
<div class="example-header">Example phrases:</div>
|
214 |
+
<ul>
|
215 |
+
<li>"Ana Nadi Bezzaaf hhh"</li>
|
216 |
+
<li>"Lyoum ajwaa zwina bezzaf."</li>
|
217 |
+
<li>"lmaghrib ahssan blad fi l3alam "</li>
|
218 |
+
</ul>
|
219 |
+
"""
|
220 |
+
)
|
221 |
+
|
222 |
+
with gr.Column():
|
223 |
+
audio_output = gr.Audio(label="Generated Speech")
|
224 |
+
error_output = gr.Textbox(label="Error (if any)", visible=False)
|
225 |
+
|
226 |
+
gr.Examples(
|
227 |
+
examples=[
|
228 |
+
["Ana Nadi Bezzaaf hhh", "male", 1.0],
|
229 |
+
["Lyoum ajwaa zwina bezzaf.", "female", 1.0],
|
230 |
+
["lmaghrib ahssan blad fi l3alam", "male", 1.0],
|
231 |
+
["Filistine hora mina lbar ila lbahr", "female", 0.8],
|
232 |
+
],
|
233 |
+
inputs=[text_input, voice_type, speed],
|
234 |
+
outputs=[audio_output, error_output],
|
235 |
+
fn=synthesize_speech
|
236 |
+
)
|
237 |
+
|
238 |
+
gr.HTML(
|
239 |
+
"""
|
240 |
+
<footer>
|
241 |
+
<p>Developed by HAMMALE | Powered by Microsoft SpeechT5 | Data: DODa</p>
|
242 |
+
</footer>
|
243 |
+
"""
|
244 |
+
)
|
245 |
+
|
246 |
+
# Set button click action
|
247 |
+
generate_btn.click(
|
248 |
+
fn=synthesize_speech,
|
249 |
+
inputs=[text_input, voice_type, speed],
|
250 |
+
outputs=[audio_output, error_output]
|
251 |
+
)
|
252 |
+
|
253 |
+
# Launch the demo
|
254 |
+
if __name__ == "__main__":
|
255 |
+
demo.launch()
|
female_embedding.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f87744b22b910652a6cc2645e99e9c2d6d63d4d8cb5e803dd0b8b520863ea0f
|
3 |
+
size 3273
|
male_embedding.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:268bdfbc37c7bab90de174bc30105c509d8149b1b8be2ddd888353ab924d6c7c
|
3 |
+
size 3263
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=3.50.2
|
2 |
+
torch>=2.0.0
|
3 |
+
transformers>=4.32.0
|
4 |
+
speechbrain==0.5.16
|
5 |
+
soundfile>=0.12.1
|
6 |
+
scipy>=1.11.1
|