File size: 11,450 Bytes
1e24329
 
 
 
 
 
 
 
 
cc5168c
 
1e24329
cc5168c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e24329
 
cc5168c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e24329
bfe31bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc5168c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import openai
import logging
import json
import gradio as gr
from typing import Optional

class ResponseManager:
    """
    This class initializes the OpenAI client and provides methods to create responses,
    maintain conversation history, and handle user queries.
    """
    def __init__(self, 
                 vector_store_id: Optional[str] = None, 
                 api_key: Optional[str] = None, 
                 meta_prompt_file: Optional[str] = None,
                 model: str = "gpt-4o-mini",
                 temperature: float = 0,
                 max_output_tokens: int = 800,
                 max_num_results: int = 15):
        """
        Initialize the ResponseManager with optional parameters for configuration.
        :param vector_store_id: The ID of the vector store to use for file search.
        :param api_key: The OpenAI API key for authentication.
        :param meta_prompt_file: Path to the meta prompt file (default: 'config/meta_prompt.txt').
        :param model: The OpenAI model to use (default: 'gpt-4o-mini').
        :param temperature: The temperature for response generation (default: 0).
        :param max_output_tokens: The maximum number of output tokens (default: 800).
        :param max_num_results: The maximum number of search results to return (default: 15).
        """
        # Load vector_store_id and api_key from environment variables if not provided
        self.vector_store_id = vector_store_id or os.getenv('VECTOR_STORE_ID')
        if not self.vector_store_id:
            logging.error("VECTOR_STORE_ID is not provided or set in the environment.")
            raise ValueError("VECTOR_STORE_ID is required.")
    
        self.api_key = api_key or os.getenv('OPENAI_API_KEY')
        if not self.api_key:
            logging.error("OPENAI_API_KEY is not provided or set in the environment.")
            raise ValueError("OPENAI_API_KEY is required.")
    
        # Initialize other attributes
        self.meta_prompt_file = meta_prompt_file or 'config/meta_prompt.txt'
        self.previous_response_id = None
    
        # Initialize the OpenAI client
        self.client = openai.OpenAI(api_key=self.api_key)
    
        # Load the meta prompt from the specified file
        self.meta_prompt = self._load_meta_prompt(self.meta_prompt_file)
    
        # Set default parameters for response generation
        self.model = model
        self.temperature = temperature
        self.max_output_tokens = max_output_tokens
        self.max_num_results = max_num_results
    
    def _load_meta_prompt(self, meta_prompt_file: str) -> str:
        """
        Load the meta prompt from the specified file.
        :param meta_prompt_file: Path to the meta prompt file.
        :return: The meta prompt as a string.
        """
        if not os.path.exists(meta_prompt_file):
            logging.error(f"Meta prompt file '{meta_prompt_file}' not found.")
            raise FileNotFoundError(f"Meta prompt file '{meta_prompt_file}' not found.")
        with open(meta_prompt_file, 'r', encoding='utf-8') as file:
            meta_prompt = file.read().strip()
        logging.info(f"Meta prompt loaded successfully from '{meta_prompt_file}'.")
        return meta_prompt
    
    def generate_response(self, query: str, history: list) -> tuple:
        """
        Generate a response to a user query using the OpenAI API.
        This method interacts with the OpenAI API to create a response based on the user's query.
        It supports optional parameters for model configuration and handles errors gracefully.
        Args:
            query (str): The user query to respond to.
            history (list): The conversation history from the chatbot.
        Returns:
            tuple: (updated conversation list for display, updated conversation list for state)
        """
        # Prepare the input for the API call
        input_data = [{"role": "developer", "content": self.meta_prompt}] if self.previous_response_id is None else []
        input_data.append({"role": "user", "content": query})
        
        # Validate the query
        if not query.strip():
            logging.warning("Empty or invalid query received.")
            warning_message = "Please enter a valid query."
            input_data.append({"role": "assistant", "content": warning_message})
            new_history = history + input_data
            return new_history, new_history
    
        try:
            logging.info("Sending request to OpenAI API...")
            response = self.client.responses.create(
                model=self.model,
                previous_response_id=self.previous_response_id,
                input=input_data,
                tools=[{
                    "type": "file_search",
                    "vector_store_ids": [self.vector_store_id],
                    "max_num_results": self.max_num_results
                }],
                truncation="auto",
                temperature=self.temperature,
                max_output_tokens=self.max_output_tokens
            )
            self.previous_response_id = response.id
            logging.info("Response received successfully.")
            input_data.append({"role": "assistant", "content": response.output_text})
            new_history = history + input_data
            return new_history, new_history
        except Exception as e:
            logging.error(f"An error occurred while generating a response: {e}")
            error_message = "Sorry, I couldn't generate a response at this time. Please try again later."
            input_data.append({"role": "assistant", "content": error_message})
            new_history = history + input_data
            return new_history, new_history
 
class ChatbotInterface:
    def init(self,
        config_path: str = 'config/gradio_config.json',
        model: str = "gpt-4o-mini",
        temperature: float = 0,
        max_output_tokens: int = 800,
        max_num_results: int = 15,
        vector_store_id: Optional[str] = None,
        api_key: Optional[str] = None,
        meta_prompt_file: Optional[str] = None):
        """
        Initialize the ChatbotInterface with configuration and custom parameters for ResponseManager.
        :param config_path: Path to the configuration JSON file.
        :param model: The OpenAI model to use (default: 'gpt-4o-mini').
        :param temperature: The temperature for response generation (default: 0).
        :param max_output_tokens: The maximum number of output tokens (default: 800).
        :param max_num_results: The maximum number of search results to return (default: 15).
        :param vector_store_id: The ID of the vector store to use for file search.
        :param api_key: The OpenAI API key for authentication.
        :param meta_prompt_file: Path to the meta prompt file.
        """
        self.config = self.load_config(config_path)
        self.title = self.config["chatbot_title"]
        self.description = self.config["chatbot_description"]
        self.input_label = self.config["chatbot_input_label"]
        self.input_placeholder = self.config["chatbot_input_placeholder"]
        self.output_label = self.config["chatbot_output_label"]
        self.reset_button = self.config["chatbot_reset_button"]
        self.submit_button = self.config["chatbot_submit_button"]
        
        # Initialize ResponseManager with custom parameters
        try:
            self.response_manager = ResponseManager(
                model=model,
                temperature=temperature,
                max_output_tokens=max_output_tokens,
                max_num_results=max_num_results,
                vector_store_id=vector_store_id,
                api_key=api_key,
                meta_prompt_file=meta_prompt_file
            )
            self.generate_response = self.response_manager.generate_response  
            logging.info(
                "ChatbotInterface initialized with the following parameters:\n"
                f"  - Model: {model}\n"
                f"  - Temperature: {temperature}\n"
                f"  - Max Output Tokens: {max_output_tokens}\n"
                f"  - Max Number of Results: {max_num_results}\n"
                f"  - Vector Store ID: {vector_store_id}\n"
                f"  - API Key: {'Provided' if api_key else 'Not Provided'}\n"
                f"  - Meta Prompt File: {meta_prompt_file or 'Default'}"
            )
        except Exception as e:
            logging.error(f"Failed to initialize ResponseManager: {e}")
            raise
        
           
    @staticmethod
    def load_config(config_path: str) -> dict:
        """
        Load the configuration for Gradio GUI interface from the JSON file.
        :param config_path: Path to the configuration JSON file.
        :return: Configuration dictionary.
        """
        logging.info(f"Loading configuration from {config_path}...")
        if not os.path.exists(config_path):
            logging.error(f"Configuration file not found: {config_path}")
            raise FileNotFoundError(f"Configuration file not found: {config_path}")
    
        with open(config_path, 'r') as config_file:
            config = json.load(config_file)
    
        required_keys = [
            "chatbot_title", "chatbot_description", "chatbot_input_label",
            "chatbot_input_placeholder", "chatbot_output_label",
            "chatbot_reset_button", "chatbot_submit_button"
        ]
        for key in required_keys:
            if key not in config:
                logging.error(f"Missing required configuration key: {key}")
                raise ValueError(f"Missing required configuration key: {key}")
    
        logging.info("Configuration loaded successfully.")
        return config
    
    def reset_output(self) -> list:
        """
        Reset the chatbot output.
        :return: An empty list to reset the output.
        """
        return []
    
    def create_interface(self) -> gr.Blocks:
        """
        Create the Gradio Blocks interface.
        :return: A Gradio Blocks interface object.
        """
        logging.info("Creating Gradio interface...")
    
        # Define the Gradio Blocks interface
        with gr.Blocks() as demo:
            gr.Markdown(f"## {self.title}\n{self.description}")
    
            # Chatbot history component    
            chatbot_output = gr.Chatbot(label=self.output_label, type="messages")
            
            # Adding a session-specific state to store conversation history.
            conversation_state = gr.State([])
    
            # User input
            user_input = gr.Textbox(
                lines=2,
                label=self.input_label,
                placeholder=self.input_placeholder
            )
    
            # Buttons
            with gr.Row():
                reset = gr.Button(self.reset_button, variant="secondary")
                submit = gr.Button(self.submit_button, variant="primary")
    
            submit.click(fn=self.generate_response, inputs=[user_input, conversation_state], outputs=[chatbot_output, conversation_state])
            user_input.submit(fn=self.generate_response, inputs=[user_input, conversation_state], outputs=[chatbot_output, conversation_state])
            reset.click(fn=self.reset_output, inputs=None, outputs=chatbot_output)
    
    
        logging.info("Gradio interface created successfully.")
        return demo