HMC-CIS-chatbot / utils /response_manager.py
AashitaK's picture
Update utils/response_manager.py
caf13db verified
raw
history blame
6.21 kB
import os
import openai
import logging
from typing import Optional
class ResponseManager:
"""
This class initializes the OpenAI client and provides methods to create responses,
maintain conversation history, and handle user queries.
Attributes:
DEFAULT_META_PROMPT_FILE (str): Default path to the meta prompt file.
DEFAULT_MODEL (str): Default OpenAI model to use.
DEFAULT_TEMPERATURE (float): Default temperature for response generation.
DEFAULT_MAX_OUTPUT_TOKENS (int): Default maximum number of output tokens.
DEFAULT_MAX_NUM_RESULTS (int): Default maximum number of search results.
Methods:
__init__(vector_store_id: Optional[str], api_key: Optional[str], meta_prompt_file: Optional[str]):
Initializes the ResponseManager with a vector store ID, API key, and meta prompt file.
_load_meta_prompt(meta_prompt_file: str) -> str:
Loads the meta prompt from the specified file.
create_response(query: str, model: Optional[str], temperature: Optional[float],
max_output_tokens: Optional[int], max_num_results: Optional[int]) -> str:
Creates a response to a user query using the OpenAI API.
conversation(query: str, model: Optional[str], temperature: Optional[float],
max_output_tokens: Optional[int], max_num_results: Optional[int],
Handles chatbot interaction and maintains conversation history.
"""
DEFAULT_META_PROMPT_FILE = 'config/meta_prompt.txt'
DEFAULT_MODEL = "gpt-4o-mini"
DEFAULT_TEMPERATURE = 0
DEFAULT_MAX_OUTPUT_TOKENS = 800
DEFAULT_MAX_NUM_RESULTS = 15
def __init__(self, vector_store_id: Optional[str] = None, api_key: Optional[str] = None, meta_prompt_file: Optional[str] = None):
"""
Initialize the ResponseManager with a vector store ID, API key, and meta prompt file.
:param vector_store_id: The ID of the vector store to use for file search.
:param api_key: The OpenAI API key for authentication.
:param meta_prompt_file: Path to the meta prompt file (default: 'config/meta_prompt.txt').
"""
# Load vector_store_id and api_key from environment variables if not provided
self.vector_store_id = vector_store_id or os.getenv('VECTOR_STORE_ID')
if not self.vector_store_id:
logging.error("VECTOR_STORE_ID is not provided or set in the environment.")
raise ValueError("VECTOR_STORE_ID is required.")
self.api_key = api_key or os.getenv('OPENAI_API_KEY')
if not self.api_key:
logging.error("OPENAI_API_KEY is not provided or set in the environment.")
raise ValueError("OPENAI_API_KEY is required.")
# Initialize other attributes
self.meta_prompt_file = meta_prompt_file or self.DEFAULT_META_PROMPT_FILE
self.previous_response_id = None
# Initialize the OpenAI client
self.client = openai.OpenAI(api_key=self.api_key)
# Load the meta prompt from the specified file
self.meta_prompt = self._load_meta_prompt(self.meta_prompt_file)
def _load_meta_prompt(self, meta_prompt_file: str) -> str:
"""
Load the meta prompt from the specified file.
:param meta_prompt_file: Path to the meta prompt file.
:return: The meta prompt as a string.
"""
if not os.path.exists(meta_prompt_file):
logging.error(f"Meta prompt file '{meta_prompt_file}' not found.")
raise FileNotFoundError(f"Meta prompt file '{meta_prompt_file}' not found.")
with open(meta_prompt_file, 'r', encoding='utf-8') as file:
meta_prompt = file.read().strip()
logging.info(f"Meta prompt loaded successfully from '{meta_prompt_file}'.")
return meta_prompt
def generate_response(self, query: str, history: list) -> list:
"""
Generate a response to a user query using the OpenAI API.
This method interacts with the OpenAI API to create a response based on the user's query.
It supports optional parameters for model configuration and handles errors gracefully.
Args:
query (str): The user query to respond to.
history (list): The conversation history from the chatbot.
Returns:
list: A list of dictionaries representing the conversation, including the generated response.
"""
# Prepare the input for the API call
input_data = [{"role": "developer", "content": self.meta_prompt}] if self.previous_response_id is None else []
input_data.append({"role": "user", "content": query})
# Validate the query
if not query.strip():
logging.warning("Empty or invalid query received.")
warning_message = "Please enter a valid query."
input_data.append({"role": "assistant", "content": warning_message})
return history + input_data
try:
logging.info("Sending request to OpenAI API...")
response = self.client.responses.create(
model=self.DEFAULT_MODEL,
previous_response_id=self.previous_response_id,
input=input_data,
tools=[{
"type": "file_search",
"vector_store_ids": [self.vector_store_id],
"max_num_results": self.DEFAULT_MAX_NUM_RESULTS
}],
temperature=self.DEFAULT_TEMPERATURE,
max_output_tokens=self.DEFAULT_MAX_OUTPUT_TOKENS
)
self.previous_response_id = response.id
logging.info("Response received successfully.")
input_data.append({"role": "assistant", "content": response.output_text})
return history + input_data
except Exception as e:
logging.error(f"An error occurred while generating a response: {e}")
error_message = "Sorry, I couldn't generate a response at this time. Please try again later."
input_data.append({"role": "assistant", "content": error_message})
return history + input_data