HMC-CIS-chatbot / utils /session_history2.py
AashitaK's picture
Rename utils/session_history3.py to utils/session_history2.py
95bce1c verified
raw
history blame
13 kB
import os
import openai
import logging
from typing import Optional
class ResponseManager:
"""
This class initializes the OpenAI client and provides methods to create responses,
maintain conversation history, and handle user queries.
"""
def __init__(self,
vector_store_id: Optional[str] = None,
api_key: Optional[str] = None,
meta_prompt_file: Optional[str] = None,
model: str = "gpt-4o-mini",
temperature: float = 0,
max_output_tokens: int = 800,
max_num_results: int = 15):
"""
Initialize the ResponseManager with optional parameters for configuration.
:param vector_store_id: The ID of the vector store to use for file search.
:param api_key: The OpenAI API key for authentication.
:param meta_prompt_file: Path to the meta prompt file (default: 'config/meta_prompt.txt').
:param model: The OpenAI model to use (default: 'gpt-4o-mini').
:param temperature: The temperature for response generation (default: 0).
:param max_output_tokens: The maximum number of output tokens (default: 800).
:param max_num_results: The maximum number of search results to return (default: 15).
"""
# Load vector_store_id and api_key from environment variables if not provided
self.vector_store_id = vector_store_id or os.getenv('VECTOR_STORE_ID')
if not self.vector_store_id:
logging.error("VECTOR_STORE_ID is not provided or set in the environment.")
raise ValueError("VECTOR_STORE_ID is required.")
self.api_key = api_key or os.getenv('OPENAI_API_KEY')
if not self.api_key:
logging.error("OPENAI_API_KEY is not provided or set in the environment.")
raise ValueError("OPENAI_API_KEY is required.")
# Initialize other attributes
self.meta_prompt_file = meta_prompt_file or 'config/meta_prompt.txt'
self.previous_response_id = None
# Initialize the OpenAI client
self.client = openai.OpenAI(api_key=self.api_key)
# Load the meta prompt from the specified file
self.meta_prompt = self._load_meta_prompt(self.meta_prompt_file)
# Set default parameters for response generation
self.model = model
self.temperature = temperature
self.max_output_tokens = max_output_tokens
self.max_num_results = max_num_results
def reset_conversation(self):
"""
Reset the conversation state internally maintained by OpenAI Response API.
"""
self.previous_response_id = None
def _load_meta_prompt(self, meta_prompt_file: str) -> str:
"""
Load the meta prompt from the specified file.
:param meta_prompt_file: Path to the meta prompt file.
:return: The meta prompt as a string.
"""
if not os.path.exists(meta_prompt_file):
logging.error(f"Meta prompt file '{meta_prompt_file}' not found.")
raise FileNotFoundError(f"Meta prompt file '{meta_prompt_file}' not found.")
with open(meta_prompt_file, 'r', encoding='utf-8') as file:
meta_prompt = file.read().strip()
logging.info(f"Meta prompt loaded successfully from '{meta_prompt_file}'.")
return meta_prompt
def generate_response(self, query: str, history: list) -> list:
"""
Generate a response to a user query using the OpenAI API.
This method interacts with the OpenAI API to create a response based on the user's query.
It supports optional parameters for model configuration and handles errors gracefully.
Args:
query (str): The user query to respond to.
history (list): The conversation history from the chatbot.
Returns:
list: A list of dictionaries representing the conversation, including the generated response.
"""
# Prepare the input for the API call
input_data = [{"role": "developer", "content": self.meta_prompt}] if self.previous_response_id is None else []
input_data.append({"role": "user", "content": query})
# Validate the query
if not query.strip():
logging.warning("Empty or invalid query received.")
warning_message = "Please enter a valid query."
input_data.append({"role": "assistant", "content": warning_message})
return history + input_data
try:
logging.info("Sending request to OpenAI API...")
response = self.client.responses.create(
model=self.model,
previous_response_id=self.previous_response_id,
input=input_data,
tools=[{
"type": "file_search",
"vector_store_ids": [self.vector_store_id],
"max_num_results": self.max_num_results
}],
truncation="auto",
temperature=self.temperature,
max_output_tokens=self.max_output_tokens
)
self.previous_response_id = response.id
logging.info("Response received successfully.")
input_data.append({"role": "assistant", "content": response.output_text})
return history + input_data
except Exception as e:
logging.error(f"An error occurred while generating a response: {e}")
error_message = "Sorry, I couldn't generate a response at this time. Please try again later."
input_data.append({"role": "assistant", "content": error_message})
return history + input_data
import os
import json
import logging
from typing import Optional
import gradio as gr
from utils.response_manager import ResponseManager
class ChatbotInterface:
def __init__(self,
config_path: str = 'config/gradio_config.json',
model: str = "gpt-4o-mini",
temperature: float = 0,
max_output_tokens: int = 800,
max_num_results: int = 15,
vector_store_id: Optional[str] = None,
api_key: Optional[str] = None,
meta_prompt_file: Optional[str] = None):
"""
Initialize the ChatbotInterface with configuration and custom parameters for ResponseManager.
:param config_path: Path to the configuration JSON file.
:param model: The OpenAI model to use (default: 'gpt-4o-mini').
:param temperature: The temperature for response generation (default: 0).
:param max_output_tokens: The maximum number of output tokens (default: 800).
:param max_num_results: The maximum number of search results to return (default: 15).
:param vector_store_id: The ID of the vector store to use for file search.
:param api_key: The OpenAI API key for authentication.
:param meta_prompt_file: Path to the meta prompt file .
"""
self.config = self.load_config(config_path)
self.title = self.config["chatbot_title"]
self.description = self.config["chatbot_description"]
self.input_placeholder = self.config["chatbot_input_placeholder"]
self.output_label = self.config["chatbot_output_label"]
# Parameters for ResponseManager class
self.model = model
self.temperature = temperature
self.max_output_tokens = max_output_tokens
self.max_num_results = max_num_results
self.vector_store_id = vector_store_id
self.api_key = api_key
self.meta_prompt_file = meta_prompt_file
@staticmethod
def load_config(config_path: str) -> dict:
"""
Load the configuration for Gradio GUI interface from the JSON file.
:param config_path: Path to the configuration JSON file.
:return: Configuration dictionary.
"""
logging.info(f"Loading configuration from {config_path}...")
if not os.path.exists(config_path):
logging.error(f"Configuration file not found: {config_path}")
raise FileNotFoundError(f"Configuration file not found: {config_path}")
with open(config_path, 'r') as config_file:
config = json.load(config_file)
required_keys = [
"chatbot_title",
"chatbot_description",
"chatbot_input_placeholder",
"chatbot_output_label"
]
for key in required_keys:
if key not in config:
logging.error(f"Missing required configuration key: {key}")
raise ValueError(f"Missing required configuration key: {key}")
logging.info("Configuration loaded successfully.")
return config
def create_interface(self) -> gr.Blocks:
"""
Create the Gradio Blocks interface that displays a single container including both
the text input and a small arrow submit button. The interface will clear the text input
after each message is submitted.
"""
logging.info("Creating Gradio interface...")
with gr.Blocks() as demo:
# Title and description area.
gr.Markdown(f"## {self.title}\n{self.description}")
# Chatbot output area.
chatbot_output = gr.Chatbot(label=self.output_label, type="messages")
# # Session-specific state to store conversation history.
# conversation_state = gr.State([])
# Session-specific states
conversation_state = gr.State([])
response_manager_state = gr.State(None)
# Use a gr.Row container as the input box with an integrated submit button.
with gr.Row(elem_id="input-container", equal_height=True):
user_input = gr.Textbox(
lines=1,
show_label=False, # Hide label for a unified look.
elem_id="chat-input",
placeholder=self.input_placeholder,
scale=500,
)
reset = gr.ClearButton(
value="Reset πŸ”„",
variant="secondary",
elem_id="reset-button",
size="lg"
)
# 🟒 Initialization function for session-specific response manager
def init_response_manager():
try:
rm = ResponseManager(
model=self.model,
temperature=self.temperature,
max_output_tokens=self.max_output_tokens,
max_num_results=self.max_num_results,
vector_store_id=self.vector_store_id,
api_key=self.api_key,
meta_prompt_file=self.meta_prompt_file
)
logging.info(
"ChatbotInterface initialized with the following parameters:\n"
f" - Model: {self.model}\n"
f" - Temperature: {self.temperature}\n"
f" - Max Output Tokens: {self.max_output_tokens}\n"
f" - Max Number of Results: {self.max_num_results}\n"
)
rm.reset_conversation()
return rm
except Exception as e:
logging.error(f"Failed to initialize ResponseManager: {e}")
raise
# 🟒 Reset function updated to reset ResponseManager
def reset_output():
response_manager = init_response_manager()
return [], response_manager, ""
# 🟒 Process input now uses session-specific ResponseManager
def process_input(user_message, chat_history, response_manager):
updated_history = response_manager.generate_response(user_message, chat_history)
return updated_history, updated_history, response_manager, ""
# Initialize ResponseManager on load
demo.load(
fn=init_response_manager,
inputs=None,
outputs=response_manager_state
)
reset.click(
fn=reset_output,
inputs=None,
outputs=[chatbot_output, response_manager_state, user_input]
)
user_input.submit(
fn=process_input,
inputs=[user_input, conversation_state, response_manager_state],
outputs=[chatbot_output, conversation_state, response_manager_state, user_input]
)
logging.info("Gradio interface created successfully.")
return demo