import os import json import logging from typing import Optional import gradio as gr from utils.response_manager import ResponseManager class ChatbotInterface: def __init__(self, config_path: str = 'config/gradio_config.json', model: str = "gpt-4o-mini", temperature: float = 0, max_output_tokens: int = 800, max_num_results: int = 15, vector_store_id: Optional[str] = None, api_key: Optional[str] = None, meta_prompt_file: Optional[str] = None): """ Initialize the ChatbotInterface with configuration and custom parameters for ResponseManager. :param config_path: Path to the configuration JSON file. :param model: The OpenAI model to use (default: 'gpt-4o-mini'). :param temperature: The temperature for response generation (default: 0). :param max_output_tokens: The maximum number of output tokens (default: 800). :param max_num_results: The maximum number of search results to return (default: 15). :param vector_store_id: The ID of the vector store to use for file search. :param api_key: The OpenAI API key for authentication. :param meta_prompt_file: Path to the meta prompt file . """ self.config = self.load_config(config_path) self.title = self.config["chatbot_title"] self.description = self.config["chatbot_description"] self.input_placeholder = self.config["chatbot_input_placeholder"] self.output_label = self.config["chatbot_output_label"] # Initialize ResponseManager with custom parameters try: self.response_manager = ResponseManager( model=model, temperature=temperature, max_output_tokens=max_output_tokens, max_num_results=max_num_results, vector_store_id=vector_store_id, api_key=api_key, meta_prompt_file=meta_prompt_file ) logging.info( "ChatbotInterface initialized with the following parameters:\n" f" - Model: {model}\n" f" - Temperature: {temperature}\n" f" - Max Output Tokens: {max_output_tokens}\n" f" - Max Number of Results: {max_num_results}\n" ) except Exception as e: logging.error(f"Failed to initialize ResponseManager: {e}") raise @staticmethod def load_config(config_path: str) -> dict: """ Load the configuration for Gradio GUI interface from the JSON file. :param config_path: Path to the configuration JSON file. :return: Configuration dictionary. """ logging.info(f"Loading configuration from {config_path}...") if not os.path.exists(config_path): logging.error(f"Configuration file not found: {config_path}") raise FileNotFoundError(f"Configuration file not found: {config_path}") with open(config_path, 'r') as config_file: config = json.load(config_file) required_keys = [ "chatbot_title", "chatbot_description", "chatbot_input_placeholder", "chatbot_output_label" ] for key in required_keys: if key not in config: logging.error(f"Missing required configuration key: {key}") raise ValueError(f"Missing required configuration key: {key}") logging.info("Configuration loaded successfully.") return config def create_interface(self) -> gr.Blocks: """ Create the Gradio Blocks interface that displays a single container including both the text input and a small arrow submit button. The interface will clear the text input after each message is submitted. """ logging.info("Creating Gradio interface...") with gr.Blocks() as demo: # Title and description area. gr.Markdown(f"## {self.title}\n{self.description}") # Chatbot output area. chatbot_output = gr.Chatbot(label=self.output_label, type="messages") # Use a gr.Row container as the input box with an integrated submit button. with gr.Row(elem_id="input-container", equal_height=True): user_input = gr.Textbox( lines=1, show_label=False, # Hide label for a unified look. elem_id="chat-input", placeholder=self.input_placeholder, scale=500, ) reset = gr.ClearButton( value="Reset 🔄", variant="secondary", elem_id="reset-button", size="lg" ) # Define a local function to reset input def reset_output() -> list: """ Reset the chatbot output. :return: An empty list to reset the output. """ return [], "" # Define a local function to process input def process_input(user_message, chat_history): """ Call generate_response with the user's message and chat history. Return a tuple with the updated chat history and an empty string to clear the input. """ updated_history = self.response_manager.generate_response(user_message, chat_history) return updated_history, "" # Bind the reset button click to the reset function reset.click( fn=reset_output, inputs=None, outputs=[chatbot_output, user_input] ) # Bind the Enter key (textbox submit) to the same processing function user_input.submit( fn=process_input, inputs=[user_input, chatbot_output], outputs=[chatbot_output, user_input] ) logging.info("Gradio interface created successfully.") return demo