import os import openai import logging import json import gradio as gr from typing import Optional class ResponseManager: """ This class initializes the OpenAI client and provides methods to create responses, maintain conversation history, and handle user queries. """ def __init__(self, vector_store_id: Optional[str] = None, api_key: Optional[str] = None, meta_prompt_file: Optional[str] = None, model: str = "gpt-4o-mini", temperature: float = 0, max_output_tokens: int = 800, max_num_results: int = 15): """ Initialize the ResponseManager with optional parameters for configuration. :param vector_store_id: The ID of the vector store to use for file search. :param api_key: The OpenAI API key for authentication. :param meta_prompt_file: Path to the meta prompt file (default: 'config/meta_prompt.txt'). :param model: The OpenAI model to use (default: 'gpt-4o-mini'). :param temperature: The temperature for response generation (default: 0). :param max_output_tokens: The maximum number of output tokens (default: 800). :param max_num_results: The maximum number of search results to return (default: 15). """ # Load vector_store_id and api_key from environment variables if not provided self.vector_store_id = vector_store_id or os.getenv('VECTOR_STORE_ID') if not self.vector_store_id: logging.error("VECTOR_STORE_ID is not provided or set in the environment.") raise ValueError("VECTOR_STORE_ID is required.") self.api_key = api_key or os.getenv('OPENAI_API_KEY') if not self.api_key: logging.error("OPENAI_API_KEY is not provided or set in the environment.") raise ValueError("OPENAI_API_KEY is required.") # Initialize other attributes self.meta_prompt_file = meta_prompt_file or 'config/meta_prompt.txt' self.previous_response_id = None # Initialize the OpenAI client self.client = openai.OpenAI(api_key=self.api_key) # Load the meta prompt from the specified file self.meta_prompt = self._load_meta_prompt(self.meta_prompt_file) # Set default parameters for response generation self.model = model self.temperature = temperature self.max_output_tokens = max_output_tokens self.max_num_results = max_num_results def _load_meta_prompt(self, meta_prompt_file: str) -> str: """ Load the meta prompt from the specified file. :param meta_prompt_file: Path to the meta prompt file. :return: The meta prompt as a string. """ if not os.path.exists(meta_prompt_file): logging.error(f"Meta prompt file '{meta_prompt_file}' not found.") raise FileNotFoundError(f"Meta prompt file '{meta_prompt_file}' not found.") with open(meta_prompt_file, 'r', encoding='utf-8') as file: meta_prompt = file.read().strip() logging.info(f"Meta prompt loaded successfully from '{meta_prompt_file}'.") return meta_prompt def generate_response(self, query: str, history: list) -> tuple: """ Generate a response to a user query using the OpenAI API. This method interacts with the OpenAI API to create a response based on the user's query. It supports optional parameters for model configuration and handles errors gracefully. Args: query (str): The user query to respond to. history (list): The conversation history from the chatbot. Returns: tuple: (updated conversation list for display, updated conversation list for state) """ # Prepare the input for the API call input_data = [{"role": "developer", "content": self.meta_prompt}] if self.previous_response_id is None else [] input_data.append({"role": "user", "content": query}) # Validate the query if not query.strip(): logging.warning("Empty or invalid query received.") warning_message = "Please enter a valid query." input_data.append({"role": "assistant", "content": warning_message}) new_history = history + input_data return new_history, new_history try: logging.info("Sending request to OpenAI API...") response = self.client.responses.create( model=self.model, previous_response_id=self.previous_response_id, input=input_data, tools=[{ "type": "file_search", "vector_store_ids": [self.vector_store_id], "max_num_results": self.max_num_results }], truncation="auto", temperature=self.temperature, max_output_tokens=self.max_output_tokens ) self.previous_response_id = response.id logging.info("Response received successfully.") input_data.append({"role": "assistant", "content": response.output_text}) new_history = history + input_data return new_history, new_history except Exception as e: logging.error(f"An error occurred while generating a response: {e}") error_message = "Sorry, I couldn't generate a response at this time. Please try again later." input_data.append({"role": "assistant", "content": error_message}) new_history = history + input_data return new_history, new_history class ChatbotInterface: def init(self, config_path: str = 'config/gradio_config.json', model: str = "gpt-4o-mini", temperature: float = 0, max_output_tokens: int = 800, max_num_results: int = 15, vector_store_id: Optional[str] = None, api_key: Optional[str] = None, meta_prompt_file: Optional[str] = None): """ Initialize the ChatbotInterface with configuration and custom parameters for ResponseManager. :param config_path: Path to the configuration JSON file. :param model: The OpenAI model to use (default: 'gpt-4o-mini'). :param temperature: The temperature for response generation (default: 0). :param max_output_tokens: The maximum number of output tokens (default: 800). :param max_num_results: The maximum number of search results to return (default: 15). :param vector_store_id: The ID of the vector store to use for file search. :param api_key: The OpenAI API key for authentication. :param meta_prompt_file: Path to the meta prompt file. """ self.config = self.load_config(config_path) self.title = self.config["chatbot_title"] self.description = self.config["chatbot_description"] self.input_label = self.config["chatbot_input_label"] self.input_placeholder = self.config["chatbot_input_placeholder"] self.output_label = self.config["chatbot_output_label"] self.reset_button = self.config["chatbot_reset_button"] self.submit_button = self.config["chatbot_submit_button"] # Initialize ResponseManager with custom parameters try: self.response_manager = ResponseManager( model=model, temperature=temperature, max_output_tokens=max_output_tokens, max_num_results=max_num_results, vector_store_id=vector_store_id, api_key=api_key, meta_prompt_file=meta_prompt_file ) self.generate_response = self.response_manager.generate_response logging.info( "ChatbotInterface initialized with the following parameters:\n" f" - Model: {model}\n" f" - Temperature: {temperature}\n" f" - Max Output Tokens: {max_output_tokens}\n" f" - Max Number of Results: {max_num_results}\n" f" - Vector Store ID: {vector_store_id}\n" f" - API Key: {'Provided' if api_key else 'Not Provided'}\n" f" - Meta Prompt File: {meta_prompt_file or 'Default'}" ) except Exception as e: logging.error(f"Failed to initialize ResponseManager: {e}") raise @staticmethod def load_config(config_path: str) -> dict: """ Load the configuration for Gradio GUI interface from the JSON file. :param config_path: Path to the configuration JSON file. :return: Configuration dictionary. """ logging.info(f"Loading configuration from {config_path}...") if not os.path.exists(config_path): logging.error(f"Configuration file not found: {config_path}") raise FileNotFoundError(f"Configuration file not found: {config_path}") with open(config_path, 'r') as config_file: config = json.load(config_file) required_keys = [ "chatbot_title", "chatbot_description", "chatbot_input_label", "chatbot_input_placeholder", "chatbot_output_label", "chatbot_reset_button", "chatbot_submit_button" ] for key in required_keys: if key not in config: logging.error(f"Missing required configuration key: {key}") raise ValueError(f"Missing required configuration key: {key}") logging.info("Configuration loaded successfully.") return config def reset_output(self) -> list: """ Reset the chatbot output. :return: An empty list to reset the output. """ return [] def create_interface(self) -> gr.Blocks: """ Create the Gradio Blocks interface. :return: A Gradio Blocks interface object. """ logging.info("Creating Gradio interface...") # Define the Gradio Blocks interface with gr.Blocks() as demo: gr.Markdown(f"## {self.title}\n{self.description}") # Chatbot history component chatbot_output = gr.Chatbot(label=self.output_label, type="messages") # Adding a session-specific state to store conversation history. conversation_state = gr.State([]) # User input user_input = gr.Textbox( lines=2, label=self.input_label, placeholder=self.input_placeholder ) # Buttons with gr.Row(): reset = gr.Button(self.reset_button, variant="secondary") submit = gr.Button(self.submit_button, variant="primary") submit.click(fn=self.generate_response, inputs=[user_input, conversation_state], outputs=[chatbot_output, conversation_state]) user_input.submit(fn=self.generate_response, inputs=[user_input, conversation_state], outputs=[chatbot_output, conversation_state]) reset.click(fn=self.reset_output, inputs=None, outputs=chatbot_output) logging.info("Gradio interface created successfully.") return demo