import os import json import logging from typing import Optional import asyncio import gradio as gr from utils.response_manager import ResponseManager class ChatbotInterface: def __init__(self, model: str = "gpt-4o-mini", temperature: float = 0, max_output_tokens: int = 600, max_num_results: int = 5, vector_store_id: Optional[str] = None, api_key: Optional[str] = None, meta_prompt_file: Optional[str] = None, config_path: str = 'config/gradio_config.json' ): """ Initialize the ChatbotInterface with configuration and custom parameters for ResponseManager. :param config_path: Path to the configuration JSON file. :param model: The OpenAI model to use (default: 'gpt-4o-mini'). :param temperature: The temperature for response generation (default: 0). :param max_output_tokens: The maximum number of output tokens (default: 800). :param max_num_results: The maximum number of search results to return (default: 15). :param vector_store_id: The ID of the vector store to use for file search. :param api_key: The OpenAI API key for authentication. :param meta_prompt_file: Path to the meta prompt file . """ # Parameters for UI self.config = self.load_config(config_path) self.title = self.config["chatbot_title"] self.description = self.config["chatbot_description"] self.input_placeholder = self.config["chatbot_input_placeholder"] self.output_label = self.config["chatbot_output_label"] # Parameters for ResponseManager class self.model = model self.temperature = temperature self.max_output_tokens = max_output_tokens self.max_num_results = max_num_results self.vector_store_id = vector_store_id self.api_key = api_key self.meta_prompt_file = meta_prompt_file @staticmethod def load_config(config_path: str) -> dict: """ Load the configuration for Gradio GUI interface from the JSON file. :param config_path: Path to the configuration JSON file. :return: Configuration dictionary. """ logging.info(f"Loading configuration from {config_path}...") if not os.path.exists(config_path): logging.error(f"Configuration file not found: {config_path}") raise FileNotFoundError(f"Configuration file not found: {config_path}") with open(config_path, 'r') as config_file: config = json.load(config_file) required_keys = [ "chatbot_title", "chatbot_description", "chatbot_input_placeholder", "chatbot_output_label" ] for key in required_keys: if key not in config: logging.error(f"Missing required configuration key: {key}") raise ValueError(f"Missing required configuration key: {key}") return config def create_interface(self) -> gr.Blocks: """ Create the Gradio Blocks interface that displays a single container including both the text input and a small arrow submit button. The interface will clear the text input after each message is submitted. """ logging.info("Creating Gradio interface...") with gr.Blocks() as demo: # Title and description area. gr.Markdown(f"## {self.title}\n{self.description}") # Chatbot output area. chatbot_output = gr.Chatbot(label=self.output_label, type="messages") # Session-specific states conversation_state = gr.State([]) response_manager_state = gr.State(None) # Row area. with gr.Row(elem_id="input-container", equal_height=True): reset = gr.ClearButton( value="Clear history 🔄", variant="secondary", elem_id="reset-button", size="lg" ) user_input = gr.Textbox( lines=1, show_label=False, # Hide label for a unified look. elem_id="chat-input", placeholder=self.input_placeholder, scale=500, ) # Initialization function for session-specific response manager def init_response_manager(): try: rm = ResponseManager( model=self.model, temperature=self.temperature, max_output_tokens=self.max_output_tokens, max_num_results=self.max_num_results, vector_store_id=self.vector_store_id, api_key=self.api_key, meta_prompt_file=self.meta_prompt_file ) logging.info( "ChatbotInterface initialized with the following parameters:\n" f" - Model: {self.model}\n" f" - Temperature: {self.temperature}\n" f" - Max Output Tokens: {self.max_output_tokens}\n" f" - Max Number of Results: {self.max_num_results}\n" ) rm.reset_conversation() return rm except Exception as e: logging.error(f"Failed to initialize ResponseManager: {e}") raise # Reset function updated to reset ResponseManager def reset_output(): response_manager = init_response_manager() return [], [], response_manager, "" # Returns [chatbot_output,conversation_state, response_manager_state, user_input] # Process input now uses session-specific ResponseManager async def process_input(user_message, chat_history, response_manager): updated_history = await response_manager.generate_response(user_message, chat_history) return updated_history, updated_history, response_manager, "" # Returns [chatbot_output, conversation_state, response_manager_state, user_input] # Initialize ResponseManager object for a session on load demo.load( fn=init_response_manager, inputs=None, outputs=response_manager_state # Each session state gets its own instance of ResponseManager class ) # CLearButton action reset.click( fn=reset_output, inputs=None, outputs=[chatbot_output, conversation_state, response_manager_state, user_input] ) # Enter to trigger response generation user_input.submit( fn=process_input, inputs=[user_input, conversation_state, response_manager_state], outputs=[chatbot_output, conversation_state, response_manager_state, user_input] ) logging.info("Gradio interface created successfully.") return demo