Commit
·
dab5199
0
Parent(s):
first commit
Browse files- .gitattributes +35 -0
- .gitignore +180 -0
- README.md +18 -0
- assets/anatomies_dynamic.pt +3 -0
- assets/anatomies_lvh.pt +3 -0
- assets/anatomies_ped_a4c.pt +3 -0
- assets/anatomies_ped_psax.pt +3 -0
- assets/h1.png +0 -0
- assets/h2.png +0 -0
- assets/h3.png +0 -0
- assets/h4.png +0 -0
- assets/scaling.pt +3 -0
- assets/seg.png +0 -0
- demo.py +945 -0
- echoflow/common/__init__.py +90 -0
- echoflow/common/models.py +1730 -0
- requirements.txt +14 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# UV
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
#uv.lock
|
102 |
+
|
103 |
+
# poetry
|
104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
106 |
+
# commonly ignored for libraries.
|
107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
108 |
+
#poetry.lock
|
109 |
+
|
110 |
+
# pdm
|
111 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
112 |
+
#pdm.lock
|
113 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
114 |
+
# in version control.
|
115 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
116 |
+
.pdm.toml
|
117 |
+
.pdm-python
|
118 |
+
.pdm-build/
|
119 |
+
|
120 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
121 |
+
__pypackages__/
|
122 |
+
|
123 |
+
# Celery stuff
|
124 |
+
celerybeat-schedule
|
125 |
+
celerybeat.pid
|
126 |
+
|
127 |
+
# SageMath parsed files
|
128 |
+
*.sage.py
|
129 |
+
|
130 |
+
# Environments
|
131 |
+
.env
|
132 |
+
.venv
|
133 |
+
env/
|
134 |
+
venv/
|
135 |
+
ENV/
|
136 |
+
env.bak/
|
137 |
+
venv.bak/
|
138 |
+
|
139 |
+
# Spyder project settings
|
140 |
+
.spyderproject
|
141 |
+
.spyproject
|
142 |
+
|
143 |
+
# Rope project settings
|
144 |
+
.ropeproject
|
145 |
+
|
146 |
+
# mkdocs documentation
|
147 |
+
/site
|
148 |
+
|
149 |
+
# mypy
|
150 |
+
.mypy_cache/
|
151 |
+
.dmypy.json
|
152 |
+
dmypy.json
|
153 |
+
|
154 |
+
# Pyre type checker
|
155 |
+
.pyre/
|
156 |
+
|
157 |
+
# pytype static type analyzer
|
158 |
+
.pytype/
|
159 |
+
|
160 |
+
# Cython debug symbols
|
161 |
+
cython_debug/
|
162 |
+
|
163 |
+
# PyCharm
|
164 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
165 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
166 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
167 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
168 |
+
#.idea/
|
169 |
+
|
170 |
+
# Ruff stuff:
|
171 |
+
.ruff_cache/
|
172 |
+
|
173 |
+
# PyPI configuration file
|
174 |
+
.pypirc
|
175 |
+
|
176 |
+
tmp/
|
177 |
+
.vscode/
|
178 |
+
.gradio/
|
179 |
+
.cursor/
|
180 |
+
*.mp4
|
README.md
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: EchoFlow
|
3 |
+
emoji: 💙
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.22.0
|
8 |
+
app_file: demo.py
|
9 |
+
pinned: true
|
10 |
+
license: apache-2.0
|
11 |
+
python_version: 3.11.8
|
12 |
+
models:
|
13 |
+
- HReynaud/EchoFlow
|
14 |
+
datasets:
|
15 |
+
- HReynaud/EchoFlow
|
16 |
+
---
|
17 |
+
|
18 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
assets/anatomies_dynamic.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d8bf0fa238ca8b4ccdf8457fc8b248cebd52b005d9385115db773ec8005dc29
|
3 |
+
size 10271965
|
assets/anatomies_lvh.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfe6ff14cb9e6ba9a8d79e770423096f3bd9fa072b2a8fc984150f6e5fd91fe9
|
3 |
+
size 11179209
|
assets/anatomies_ped_a4c.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2675b28071004ad15f060f057ae13330f1f61369500d7507fadefe7b5ae9c74
|
3 |
+
size 3364061
|
assets/anatomies_ped_psax.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:881e51666a580b2830a27d7e97055a0f2ab037152547aa79af1448a2b5f65ccb
|
3 |
+
size 4635874
|
assets/h1.png
ADDED
![]() |
assets/h2.png
ADDED
![]() |
assets/h3.png
ADDED
![]() |
assets/h4.png
ADDED
![]() |
assets/scaling.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbcd8f8cf990d57b96ce7e544e5f9b48b7ad2400dfc4080e0651575f666b19ac
|
3 |
+
size 1432
|
assets/seg.png
ADDED
![]() |
demo.py
ADDED
@@ -0,0 +1,945 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import types
|
4 |
+
from urllib.parse import urlparse
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
import diffusers
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
from einops import rearrange
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
from omegaconf import OmegaConf
|
14 |
+
from PIL import Image, ImageOps
|
15 |
+
from safetensors.torch import load_file
|
16 |
+
from torch.nn import functional as F
|
17 |
+
from torchdiffeq import odeint_adjoint as odeint
|
18 |
+
|
19 |
+
from echoflow.common import instantiate_class_from_config, unscale_latents
|
20 |
+
from echoflow.common.models import (
|
21 |
+
ContrastiveModel,
|
22 |
+
DiffuserSTDiT,
|
23 |
+
ResNet18,
|
24 |
+
SegDiTTransformer2DModel,
|
25 |
+
)
|
26 |
+
|
27 |
+
torch.set_grad_enabled(False)
|
28 |
+
|
29 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
+
dtype = torch.float32
|
31 |
+
|
32 |
+
# 4f4 latent space
|
33 |
+
B, T, C, H, W = 1, 64, 4, 28, 28
|
34 |
+
|
35 |
+
VIEWS = ["A4C", "PSAX", "PLAX"]
|
36 |
+
|
37 |
+
|
38 |
+
def load_model(path):
|
39 |
+
if path.startswith("http"):
|
40 |
+
parsed_url = urlparse(path)
|
41 |
+
if "huggingface.co" in parsed_url.netloc:
|
42 |
+
parts = parsed_url.path.strip("/").split("/")
|
43 |
+
repo_id = "/".join(parts[:2])
|
44 |
+
|
45 |
+
subfolder = None
|
46 |
+
if len(parts) > 3:
|
47 |
+
subfolder = "/".join(parts[4:])
|
48 |
+
|
49 |
+
local_root = "./tmp"
|
50 |
+
local_dir = os.path.join(local_root, repo_id.replace("/", "_"))
|
51 |
+
if subfolder:
|
52 |
+
local_dir = os.path.join(local_root, subfolder)
|
53 |
+
os.makedirs(local_root, exist_ok=True)
|
54 |
+
|
55 |
+
config_file = hf_hub_download(
|
56 |
+
repo_id=repo_id,
|
57 |
+
subfolder=subfolder,
|
58 |
+
filename="config.json",
|
59 |
+
local_dir=local_root,
|
60 |
+
repo_type="model",
|
61 |
+
token=os.getenv("READ_HF_TOKEN"),
|
62 |
+
local_dir_use_symlinks=False,
|
63 |
+
)
|
64 |
+
|
65 |
+
assert os.path.exists(config_file)
|
66 |
+
|
67 |
+
hf_hub_download(
|
68 |
+
repo_id=repo_id,
|
69 |
+
filename="diffusion_pytorch_model.safetensors",
|
70 |
+
subfolder=subfolder,
|
71 |
+
local_dir=local_root,
|
72 |
+
local_dir_use_symlinks=False,
|
73 |
+
token=os.getenv("READ_HF_TOKEN"),
|
74 |
+
)
|
75 |
+
|
76 |
+
path = local_dir
|
77 |
+
|
78 |
+
model_root = os.path.join(config_file.split("config.json")[0])
|
79 |
+
json_path = os.path.join(model_root, "config.json")
|
80 |
+
assert os.path.exists(json_path)
|
81 |
+
|
82 |
+
with open(json_path, "r") as f:
|
83 |
+
config = json.load(f)
|
84 |
+
|
85 |
+
klass_name = config["_class_name"]
|
86 |
+
klass = getattr(diffusers, klass_name, None) or globals().get(klass_name, None)
|
87 |
+
assert (
|
88 |
+
klass is not None
|
89 |
+
), f"Could not find class {klass_name} in diffusers or global scope."
|
90 |
+
assert hasattr(
|
91 |
+
klass, "from_pretrained"
|
92 |
+
), f"Class {klass_name} does not support 'from_pretrained'."
|
93 |
+
|
94 |
+
return klass.from_pretrained(path)
|
95 |
+
|
96 |
+
|
97 |
+
def load_reid(path):
|
98 |
+
parsed_url = urlparse(path)
|
99 |
+
parts = parsed_url.path.strip("/").split("/")
|
100 |
+
repo_id = "/".join(parts[:2])
|
101 |
+
subfolder = "/".join(parts[4:])
|
102 |
+
|
103 |
+
local_root = "./tmp"
|
104 |
+
|
105 |
+
config_file = hf_hub_download(
|
106 |
+
repo_id=repo_id,
|
107 |
+
subfolder=subfolder,
|
108 |
+
filename="config.yaml",
|
109 |
+
local_dir=local_root,
|
110 |
+
repo_type="model",
|
111 |
+
token=os.getenv("READ_HF_TOKEN"),
|
112 |
+
local_dir_use_symlinks=False,
|
113 |
+
)
|
114 |
+
|
115 |
+
weights_file = hf_hub_download(
|
116 |
+
repo_id=repo_id,
|
117 |
+
subfolder=subfolder,
|
118 |
+
filename="backbone.safetensors",
|
119 |
+
local_dir=local_root,
|
120 |
+
repo_type="model",
|
121 |
+
token=os.getenv("READ_HF_TOKEN"),
|
122 |
+
local_dir_use_symlinks=False,
|
123 |
+
)
|
124 |
+
|
125 |
+
config = OmegaConf.load(config_file)
|
126 |
+
backbone = instantiate_class_from_config(config.backbone)
|
127 |
+
backbone = ContrastiveModel.patch_backbone(
|
128 |
+
backbone, config.model.args.in_channels, config.model.args.out_channels
|
129 |
+
)
|
130 |
+
state_dict = load_file(weights_file)
|
131 |
+
backbone.load_state_dict(state_dict)
|
132 |
+
backbone = backbone.to(device, dtype=dtype)
|
133 |
+
backbone.eval()
|
134 |
+
return backbone
|
135 |
+
|
136 |
+
|
137 |
+
def get_vae_scaler(path):
|
138 |
+
scaler = torch.load(path)
|
139 |
+
scaler = {k: v.to(device) for k, v in scaler.items()}
|
140 |
+
return scaler
|
141 |
+
|
142 |
+
|
143 |
+
generator = torch.Generator(device=device).manual_seed(0)
|
144 |
+
|
145 |
+
lifm = load_model("https://huggingface.co/HReynaud/EchoFlow/tree/main/lifm/FMiT-S2-4f4")
|
146 |
+
lifm = lifm.to(device, dtype=dtype)
|
147 |
+
lifm.eval()
|
148 |
+
|
149 |
+
vae = load_model("https://huggingface.co/HReynaud/EchoFlow/tree/main/vae/avae-4f4")
|
150 |
+
vae = vae.to(device, dtype=dtype)
|
151 |
+
vae.eval()
|
152 |
+
vae_scaler = get_vae_scaler("assets/scaling.pt")
|
153 |
+
|
154 |
+
reid = {
|
155 |
+
"anatomies": {
|
156 |
+
"A4C": torch.cat(
|
157 |
+
[
|
158 |
+
torch.load("assets/anatomies_dynamic.pt"),
|
159 |
+
torch.load("assets/anatomies_ped_a4c.pt"),
|
160 |
+
],
|
161 |
+
dim=0,
|
162 |
+
),
|
163 |
+
"PSAX": torch.load("assets/anatomies_ped_psax.pt"),
|
164 |
+
"PLAX": torch.load("assets/anatomies_lvh.pt"),
|
165 |
+
},
|
166 |
+
"models": {
|
167 |
+
"A4C": load_reid(
|
168 |
+
"https://huggingface.co/HReynaud/EchoFlow/tree/main/reid/dynamic-4f4"
|
169 |
+
),
|
170 |
+
"PSAX": load_reid(
|
171 |
+
"https://huggingface.co/HReynaud/EchoFlow/tree/main/reid/ped_psax-4f4"
|
172 |
+
),
|
173 |
+
"PLAX": load_reid(
|
174 |
+
"https://huggingface.co/HReynaud/EchoFlow/tree/main/reid/lvh-4f4"
|
175 |
+
),
|
176 |
+
},
|
177 |
+
"tau": {
|
178 |
+
"A4C": 0.9997,
|
179 |
+
"PSAX": 0.9953,
|
180 |
+
"PLAX": 0.9950,
|
181 |
+
},
|
182 |
+
}
|
183 |
+
|
184 |
+
lvfm = load_model("https://huggingface.co/HReynaud/EchoFlow/tree/main/lvfm/FMvT-S2-4f4")
|
185 |
+
lvfm = lvfm.to(device, dtype=dtype)
|
186 |
+
lvfm.eval()
|
187 |
+
|
188 |
+
|
189 |
+
def load_default_mask():
|
190 |
+
"""Load the default mask from disk. If not found, return a blank black mask."""
|
191 |
+
default_mask_path = os.path.join("assets", "default_mask.png")
|
192 |
+
try:
|
193 |
+
if os.path.exists(default_mask_path):
|
194 |
+
mask = Image.open(default_mask_path).convert("L")
|
195 |
+
# Ensure the mask is square and of proper size
|
196 |
+
mask = mask.resize((400, 400), Image.Resampling.LANCZOS)
|
197 |
+
# Make sure it's binary (0 or 255)
|
198 |
+
mask = ImageOps.autocontrast(mask, cutoff=0)
|
199 |
+
return np.array(mask)
|
200 |
+
except Exception as e:
|
201 |
+
print(f"Error loading default mask: {e}")
|
202 |
+
|
203 |
+
# Return a blank black mask if no default mask is found
|
204 |
+
return np.zeros((400, 400), dtype=np.uint8)
|
205 |
+
|
206 |
+
|
207 |
+
def preprocess_mask(mask):
|
208 |
+
"""Ensure mask is properly formatted for the model."""
|
209 |
+
if mask is None:
|
210 |
+
return np.zeros((112, 112), dtype=np.uint8)
|
211 |
+
|
212 |
+
# Check if mask is an EditorValue with multiple parts
|
213 |
+
if isinstance(mask, dict) and "composite" in mask:
|
214 |
+
# Use the composite image from the ImageEditor
|
215 |
+
mask = mask["composite"]
|
216 |
+
|
217 |
+
# If mask is already a numpy array, convert to PIL for processing
|
218 |
+
if isinstance(mask, np.ndarray):
|
219 |
+
mask_pil = Image.fromarray(mask)
|
220 |
+
else:
|
221 |
+
mask_pil = mask
|
222 |
+
|
223 |
+
# Ensure the mask is in L mode (grayscale)
|
224 |
+
mask_pil = mask_pil.convert("L")
|
225 |
+
|
226 |
+
# Apply contrast to make it binary (0 or 255)
|
227 |
+
mask_pil = ImageOps.autocontrast(mask_pil, cutoff=0)
|
228 |
+
|
229 |
+
# Threshold to ensure binary values
|
230 |
+
mask_pil = mask_pil.point(lambda p: 255 if p > 127 else 0)
|
231 |
+
|
232 |
+
# Print sizes for debugging
|
233 |
+
# print(f"Original mask size: {mask_pil.size}")
|
234 |
+
|
235 |
+
# Resize to 112x112 for the model
|
236 |
+
mask_pil = mask_pil.resize((112, 112), Image.Resampling.LANCZOS)
|
237 |
+
|
238 |
+
# Convert back to numpy array
|
239 |
+
return np.array(mask_pil)
|
240 |
+
|
241 |
+
|
242 |
+
def generate_latent_image(mask, class_selection, sampling_steps=50):
|
243 |
+
"""Generate a latent image based on mask, class selection, and sampling steps"""
|
244 |
+
|
245 |
+
# Mask
|
246 |
+
mask = preprocess_mask(mask)
|
247 |
+
mask = torch.from_numpy(mask).to(device, dtype=dtype)
|
248 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
249 |
+
mask = F.interpolate(mask, size=(H, W), mode="bilinear", align_corners=False)
|
250 |
+
mask = 1.0 * (mask > 0)
|
251 |
+
|
252 |
+
# print(mask.shape, mask.min(), mask.max(), mask.mean(), mask.std())
|
253 |
+
|
254 |
+
# Class
|
255 |
+
class_idx = VIEWS.index(class_selection)
|
256 |
+
class_idx = torch.tensor([class_idx], device=device, dtype=torch.long)
|
257 |
+
|
258 |
+
# Timesteps
|
259 |
+
timesteps = torch.linspace(
|
260 |
+
1.0, 0.0, steps=sampling_steps + 1, device=device, dtype=dtype
|
261 |
+
)
|
262 |
+
|
263 |
+
forward_kwargs = {
|
264 |
+
"class_labels": class_idx, # B x 1
|
265 |
+
"segmentation": mask, # B x 1 x H x W
|
266 |
+
}
|
267 |
+
|
268 |
+
z_1 = torch.randn(
|
269 |
+
(B, C, H, W),
|
270 |
+
device=device,
|
271 |
+
dtype=dtype,
|
272 |
+
generator=generator,
|
273 |
+
)
|
274 |
+
|
275 |
+
lifm.forward_original = lifm.forward
|
276 |
+
|
277 |
+
def new_forward(self, t, y, *args, **kwargs):
|
278 |
+
kwargs = {**kwargs, **forward_kwargs}
|
279 |
+
return self.forward_original(y, t.view(1), *args, **kwargs).sample
|
280 |
+
|
281 |
+
lifm.forward = types.MethodType(new_forward, lifm)
|
282 |
+
|
283 |
+
# Use odeint to integrate
|
284 |
+
with torch.autocast("cuda"):
|
285 |
+
latent_image = odeint(
|
286 |
+
lifm,
|
287 |
+
z_1,
|
288 |
+
timesteps,
|
289 |
+
atol=1e-5,
|
290 |
+
rtol=1e-5,
|
291 |
+
adjoint_params=lifm.parameters(),
|
292 |
+
method="euler",
|
293 |
+
)[-1]
|
294 |
+
|
295 |
+
lifm.forward = lifm.forward_original
|
296 |
+
|
297 |
+
latent_image = latent_image.detach().cpu().numpy()
|
298 |
+
|
299 |
+
# callm VAE here
|
300 |
+
|
301 |
+
return latent_image # B x C x H x W
|
302 |
+
|
303 |
+
|
304 |
+
def decode_images(latents, vae):
|
305 |
+
"""Decode latent representations to pixel space using a VAE.
|
306 |
+
|
307 |
+
Args:
|
308 |
+
latents: A numpy array of shape [B, C, H, W] for single image
|
309 |
+
or [B, C, T, H, W] for sequences/animations
|
310 |
+
vae: The VAE model for decoding
|
311 |
+
|
312 |
+
Returns:
|
313 |
+
numpy array of decoded images in [B, H, W, 3] format for single image
|
314 |
+
or [B, C, T, H, W] for sequences
|
315 |
+
"""
|
316 |
+
if latents is None:
|
317 |
+
return None
|
318 |
+
|
319 |
+
# Convert to torch tensor if needed
|
320 |
+
if not isinstance(latents, torch.Tensor):
|
321 |
+
latents = torch.from_numpy(latents).to(device, dtype=dtype)
|
322 |
+
|
323 |
+
# Unscale latents
|
324 |
+
latents = unscale_latents(latents, vae_scaler)
|
325 |
+
|
326 |
+
# Handle both single images and sequences
|
327 |
+
is_sequence = len(latents.shape) == 5 # B C T H W
|
328 |
+
|
329 |
+
# print("Sequence:", is_sequence)
|
330 |
+
|
331 |
+
if is_sequence:
|
332 |
+
B, C, T, H, W = latents.shape
|
333 |
+
latents = rearrange(latents[0], "c t h w -> t c h w")
|
334 |
+
else:
|
335 |
+
B, C, H, W = latents.shape
|
336 |
+
|
337 |
+
# print("Latents:", latents.shape)
|
338 |
+
|
339 |
+
with torch.no_grad():
|
340 |
+
# Decode latents to pixel space
|
341 |
+
# decode one by one
|
342 |
+
decoded = []
|
343 |
+
for i in range(latents.shape[0]):
|
344 |
+
decoded.append(vae.decode(latents[i : i + 1].float()).sample)
|
345 |
+
decoded = torch.cat(decoded, dim=0)
|
346 |
+
|
347 |
+
decoded = (decoded + 1) * 128
|
348 |
+
decoded = decoded.clamp(0, 255).to(torch.uint8).cpu()
|
349 |
+
|
350 |
+
if is_sequence:
|
351 |
+
# Reshape back to [B, C, T, H, W] for sequences
|
352 |
+
decoded = rearrange(decoded, "t c h w -> c t h w").unsqueeze(0)
|
353 |
+
else:
|
354 |
+
decoded = decoded.squeeze()
|
355 |
+
decoded = decoded.permute(1, 2, 0)
|
356 |
+
|
357 |
+
# print("Decoded:", decoded.shape)
|
358 |
+
return decoded.numpy()
|
359 |
+
|
360 |
+
|
361 |
+
def decode_latent_to_pixel(latent_image):
|
362 |
+
"""Decode a single latent image to pixel space"""
|
363 |
+
global vae
|
364 |
+
if latent_image is None:
|
365 |
+
return None
|
366 |
+
|
367 |
+
# Add batch dimension if needed
|
368 |
+
if len(latent_image.shape) == 3:
|
369 |
+
latent_image = latent_image[None, ...]
|
370 |
+
|
371 |
+
decoded_image = decode_images(latent_image, vae)
|
372 |
+
decoded_image = cv2.resize(
|
373 |
+
decoded_image, (400, 400), interpolation=cv2.INTER_NEAREST
|
374 |
+
)
|
375 |
+
|
376 |
+
return decoded_image
|
377 |
+
|
378 |
+
|
379 |
+
def check_privacy(latent_image_numpy, class_selection):
|
380 |
+
"""Check if the latent image is too similar to database images"""
|
381 |
+
latent_image = torch.from_numpy(latent_image_numpy).to(device, dtype=dtype)
|
382 |
+
reid_model = reid["models"][class_selection].to(device, dtype=dtype)
|
383 |
+
real_anatomies = reid["anatomies"][class_selection] # already scaled
|
384 |
+
tau = reid["tau"][class_selection]
|
385 |
+
|
386 |
+
with torch.no_grad():
|
387 |
+
features = reid_model(latent_image).sigmoid().cpu()
|
388 |
+
|
389 |
+
corr = torch.corrcoef(torch.cat([real_anatomies, features], dim=0))[0, 1:]
|
390 |
+
corr = corr.max()
|
391 |
+
|
392 |
+
if corr > tau:
|
393 |
+
return (
|
394 |
+
None,
|
395 |
+
f"⚠️ **Warning:** Generated image is too similar to training data. Privacy check failed (corr = {corr:.4f} / tau = {tau:.4f})",
|
396 |
+
)
|
397 |
+
else:
|
398 |
+
return (
|
399 |
+
latent_image_numpy,
|
400 |
+
f"✅ **Success:** Generated image passed privacy check (corr = {corr:.4f} / tau = {tau:.4f})",
|
401 |
+
)
|
402 |
+
|
403 |
+
|
404 |
+
def generate_animation(
|
405 |
+
latent_image, ejection_fraction, sampling_steps=50, cfg_scale=1.0
|
406 |
+
):
|
407 |
+
"""Generate an animated sequence of latent images based on EF"""
|
408 |
+
# print(
|
409 |
+
# f"Generating animation with EF = {ejection_fraction}, steps = {sampling_steps}, CFG = {cfg_scale}"
|
410 |
+
# )
|
411 |
+
# print(latent_image.shape, type(latent_image))
|
412 |
+
|
413 |
+
if latent_image is None:
|
414 |
+
return None
|
415 |
+
|
416 |
+
lvefs = torch.tensor([ejection_fraction / 100.0], device=device, dtype=dtype)
|
417 |
+
lvefs = lvefs[:, None, None].to(device, dtype)
|
418 |
+
uncond_lvefs = -1 * torch.ones_like(lvefs)
|
419 |
+
|
420 |
+
ref_images = torch.from_numpy(latent_image).to(device, dtype)
|
421 |
+
ref_images = ref_images[:, :, None, :, :] # B x C x 1 x H x W
|
422 |
+
ref_images = ref_images.repeat(1, 1, T, 1, 1) # B x C x T x H x W
|
423 |
+
uncond_images = torch.zeros_like(ref_images)
|
424 |
+
|
425 |
+
timesteps = torch.linspace(
|
426 |
+
1.0, 0.0, steps=sampling_steps + 1, device=device, dtype=dtype
|
427 |
+
)
|
428 |
+
|
429 |
+
forward_kwargs = {
|
430 |
+
"encoder_hidden_states": lvefs,
|
431 |
+
"cond_image": ref_images,
|
432 |
+
}
|
433 |
+
|
434 |
+
z_1 = torch.randn(
|
435 |
+
(B, C, T, H, W),
|
436 |
+
device=device,
|
437 |
+
dtype=dtype,
|
438 |
+
generator=generator,
|
439 |
+
)
|
440 |
+
|
441 |
+
# print(
|
442 |
+
# z_1.shape,
|
443 |
+
# forward_kwargs["encoder_hidden_states"].shape,
|
444 |
+
# forward_kwargs["cond_image"].shape,
|
445 |
+
# )
|
446 |
+
|
447 |
+
lvfm.forward_original = lvfm.forward
|
448 |
+
|
449 |
+
def new_forward(self, t, y, *args, **kwargs):
|
450 |
+
kwargs = {**kwargs, **forward_kwargs}
|
451 |
+
# y has shape (B, C, T, H, W)
|
452 |
+
|
453 |
+
pred = self.forward_original(y, t.repeat(y.size(0)), *args, **kwargs).sample
|
454 |
+
|
455 |
+
if cfg_scale != 1.0:
|
456 |
+
uncond_kwargs = {
|
457 |
+
"encoder_hidden_states": uncond_lvefs,
|
458 |
+
"cond_image": uncond_images,
|
459 |
+
}
|
460 |
+
uncond_pred = self.forward_original(
|
461 |
+
y, t.repeat(y.size(0)), *args, **uncond_kwargs
|
462 |
+
).sample
|
463 |
+
|
464 |
+
pred = uncond_pred + cfg_scale * (pred - uncond_pred)
|
465 |
+
|
466 |
+
return pred
|
467 |
+
|
468 |
+
lvfm.forward = types.MethodType(new_forward, lvfm)
|
469 |
+
|
470 |
+
with torch.autocast("cuda"):
|
471 |
+
synthetic_video = odeint(
|
472 |
+
lvfm,
|
473 |
+
z_1,
|
474 |
+
timesteps,
|
475 |
+
atol=1e-5,
|
476 |
+
rtol=1e-5,
|
477 |
+
adjoint_params=lvfm.parameters(),
|
478 |
+
method="euler",
|
479 |
+
)[-1]
|
480 |
+
|
481 |
+
lvfm.forward = lvfm.forward_original
|
482 |
+
|
483 |
+
# print("Synthetic video:", synthetic_video.shape)
|
484 |
+
|
485 |
+
return synthetic_video # B x C x T x H x W
|
486 |
+
|
487 |
+
|
488 |
+
def decode_animation(latent_animation):
|
489 |
+
"""Decode a latent animation to pixel space"""
|
490 |
+
global vae
|
491 |
+
if latent_animation is None:
|
492 |
+
return None
|
493 |
+
|
494 |
+
# Convert to torch tensor if needed
|
495 |
+
if not isinstance(latent_animation, torch.Tensor):
|
496 |
+
latent_animation = torch.from_numpy(latent_animation).to(device, dtype=dtype)
|
497 |
+
|
498 |
+
# Ensure shape is B x C x T x H x W
|
499 |
+
if len(latent_animation.shape) == 4: # [T, C, H, W]
|
500 |
+
latent_animation = latent_animation[None, ...] # Add batch dimension
|
501 |
+
|
502 |
+
# Decode using VAE
|
503 |
+
decoded = decode_images(
|
504 |
+
latent_animation, vae
|
505 |
+
) # Returns B x C x T x H x W numpy array
|
506 |
+
|
507 |
+
# Remove batch dimension and transpose to T x H x W x C
|
508 |
+
decoded = np.transpose(decoded[0], (1, 2, 3, 0)) # [T, H, W, C]
|
509 |
+
|
510 |
+
# Resize frames to 400x400
|
511 |
+
decoded = np.stack(
|
512 |
+
[
|
513 |
+
cv2.resize(frame, (400, 400), interpolation=cv2.INTER_NEAREST)
|
514 |
+
for frame in decoded
|
515 |
+
]
|
516 |
+
)
|
517 |
+
|
518 |
+
# Save to temporary file
|
519 |
+
temp_file = "temp_video_2.mp4"
|
520 |
+
fps = 32
|
521 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
522 |
+
out = cv2.VideoWriter(temp_file, fourcc, fps, (400, 400))
|
523 |
+
|
524 |
+
# Write frames
|
525 |
+
for frame in decoded:
|
526 |
+
out.write(frame)
|
527 |
+
out.release()
|
528 |
+
|
529 |
+
return temp_file
|
530 |
+
|
531 |
+
|
532 |
+
def convert_latent_to_display(latent_image):
|
533 |
+
"""Convert multi-channel latent image to grayscale for display"""
|
534 |
+
if latent_image is None:
|
535 |
+
return None
|
536 |
+
|
537 |
+
# Check shape
|
538 |
+
if len(latent_image.shape) == 4: # [B, C, H, W]
|
539 |
+
# Remove batch dimension and average across channels
|
540 |
+
display_image = np.squeeze(latent_image, axis=0) # [C, H, W]
|
541 |
+
display_image = np.mean(display_image, axis=0) # [H, W]
|
542 |
+
elif len(latent_image.shape) == 3: # [C, H, W]
|
543 |
+
# Average across channels
|
544 |
+
display_image = np.mean(latent_image, axis=0) # [H, W]
|
545 |
+
else:
|
546 |
+
display_image = latent_image
|
547 |
+
|
548 |
+
# Normalize to 0-1 range
|
549 |
+
display_image = (display_image - display_image.min()) / (
|
550 |
+
display_image.max() - display_image.min() + 1e-8
|
551 |
+
)
|
552 |
+
|
553 |
+
# Convert to grayscale image
|
554 |
+
display_image = (display_image * 255).astype(np.uint8)
|
555 |
+
|
556 |
+
# Resize to a larger size (e.g., 400x400) using bicubic interpolation
|
557 |
+
display_image = cv2.resize(
|
558 |
+
display_image, (400, 400), interpolation=cv2.INTER_NEAREST
|
559 |
+
)
|
560 |
+
|
561 |
+
return display_image
|
562 |
+
|
563 |
+
|
564 |
+
def latent_animation_to_grayscale(latent_animation):
|
565 |
+
"""Convert multi-channel latent animation to grayscale for display"""
|
566 |
+
if latent_animation is None:
|
567 |
+
return None
|
568 |
+
|
569 |
+
# print("Input shape:", latent_animation.shape)
|
570 |
+
|
571 |
+
# Convert to numpy if it's a torch tensor
|
572 |
+
if torch.is_tensor(latent_animation):
|
573 |
+
latent_animation = latent_animation.detach().cpu().numpy()
|
574 |
+
|
575 |
+
# Handle shape B x C x T x H x W -> T x H x W
|
576 |
+
if len(latent_animation.shape) == 5: # [B, C, T, H, W]
|
577 |
+
latent_animation = np.squeeze(latent_animation, axis=0) # [C, T, H, W]
|
578 |
+
latent_animation = np.transpose(latent_animation, (1, 0, 2, 3)) # [T, C, H, W]
|
579 |
+
|
580 |
+
# print("After transpose:", latent_animation.shape)
|
581 |
+
|
582 |
+
# Average across channels
|
583 |
+
latent_animation = np.mean(latent_animation, axis=1) # [T, H, W]
|
584 |
+
|
585 |
+
# print("After channel reduction:", latent_animation.shape)
|
586 |
+
|
587 |
+
# Normalize each frame independently
|
588 |
+
min_vals = latent_animation.min(axis=(1, 2), keepdims=True)
|
589 |
+
max_vals = latent_animation.max(axis=(1, 2), keepdims=True)
|
590 |
+
latent_animation = (latent_animation - min_vals) / (max_vals - min_vals + 1e-8)
|
591 |
+
|
592 |
+
# Convert to uint8
|
593 |
+
latent_animation = (latent_animation * 255).astype(np.uint8)
|
594 |
+
|
595 |
+
# print("Before resize:", latent_animation.shape)
|
596 |
+
|
597 |
+
# Resize each frame
|
598 |
+
resized_frames = []
|
599 |
+
for frame in latent_animation:
|
600 |
+
resized = cv2.resize(frame, (400, 400), interpolation=cv2.INTER_NEAREST)
|
601 |
+
resized_frames.append(resized)
|
602 |
+
|
603 |
+
# Stack back into video
|
604 |
+
grayscale_video = np.stack(resized_frames)
|
605 |
+
|
606 |
+
# print("Final shape:", grayscale_video.shape)
|
607 |
+
|
608 |
+
# Add a dummy channel dimension for grayscale video
|
609 |
+
grayscale_video = grayscale_video[..., None].repeat(3, axis=-1) # Convert to RGB
|
610 |
+
|
611 |
+
# print("Output shape with channels:", grayscale_video.shape)
|
612 |
+
|
613 |
+
# Save to temporary file
|
614 |
+
temp_file = "temp_video.mp4"
|
615 |
+
fps = 32
|
616 |
+
|
617 |
+
# Create VideoWriter object
|
618 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
619 |
+
out = cv2.VideoWriter(temp_file, fourcc, fps, (400, 400))
|
620 |
+
|
621 |
+
# Write frames
|
622 |
+
for frame in grayscale_video:
|
623 |
+
out.write(frame)
|
624 |
+
|
625 |
+
out.release()
|
626 |
+
|
627 |
+
return temp_file
|
628 |
+
|
629 |
+
|
630 |
+
def create_demo():
|
631 |
+
# Define the theme and layout
|
632 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
633 |
+
gr.Markdown("# EchoFlow Demo")
|
634 |
+
gr.Markdown("## Dataset Generation Pipeline")
|
635 |
+
|
636 |
+
gr.Markdown(
|
637 |
+
"""
|
638 |
+
### 🎯 Purpose
|
639 |
+
This demo showcases EchoFlow's ability to generate synthetic echocardiogram images and videos while preserving patient privacy. The pipeline consists of four main steps:
|
640 |
+
|
641 |
+
1. **Latent Image Generation**: Draw a mask to indicate the region where the Left Ventricle should appear. Select the desired cardiac view, and click "Generate Latent Image". This outputs a latent image, which can be decoded into a pixel space image by clicking "Decode to Pixel Space".
|
642 |
+
2. **Privacy Filter**: When clicking "Run Privacy Check", the generated image will be checked against a database of all training anatomies to ensure it is sufficiently different from real patient data.
|
643 |
+
3. **Latent Video Generation**: If the privacy check passes, the latent image can be animated into a video with the desired Ejection Fraction.
|
644 |
+
4. **Video Decoding**: The video can be decoded into a pixel space video by clicking "Decode Video".
|
645 |
+
|
646 |
+
### ⚙️ Parameters
|
647 |
+
- **Sampling Steps**: Higher values produce better quality but take longer
|
648 |
+
- **Ejection Fraction**: Controls the strength of heart contraction in the animation
|
649 |
+
- **CFG Scale**: Controls how closely the animation follows the specified conditions
|
650 |
+
"""
|
651 |
+
)
|
652 |
+
|
653 |
+
# Main container with 4 columns
|
654 |
+
with gr.Row():
|
655 |
+
# Column 1: Latent Image Generation
|
656 |
+
with gr.Column():
|
657 |
+
gr.Markdown(
|
658 |
+
'<img src="https://i.ibb.co/MysCHY1M/h1.png" style="width: 100%; height: 75px; object-fit: contain;">'
|
659 |
+
)
|
660 |
+
gr.Markdown("### Latent Image Generation")
|
661 |
+
|
662 |
+
with gr.Row():
|
663 |
+
# Input mask (binary image)
|
664 |
+
with gr.Column(scale=1):
|
665 |
+
# gr.Markdown("#### Mask Condition")
|
666 |
+
gr.Markdown("Draw the LV mask (white = region of interest)")
|
667 |
+
# Create a black background for the canvas
|
668 |
+
black_background = np.zeros((400, 400), dtype=np.uint8)
|
669 |
+
|
670 |
+
# Load the default mask image if it exists
|
671 |
+
try:
|
672 |
+
mask_image = Image.open("assets/seg.png").convert("L")
|
673 |
+
mask_image = mask_image.resize(
|
674 |
+
(400, 400), Image.Resampling.LANCZOS
|
675 |
+
)
|
676 |
+
# Make it binary (0 or 255)
|
677 |
+
mask_image = ImageOps.autocontrast(mask_image, cutoff=0)
|
678 |
+
mask_image = mask_image.point(
|
679 |
+
lambda p: 255 if p > 127 else 0
|
680 |
+
)
|
681 |
+
mask_array = np.array(mask_image)
|
682 |
+
|
683 |
+
# Create the editor value structure
|
684 |
+
editor_value = {
|
685 |
+
"background": black_background, # Black background
|
686 |
+
"layers": [mask_array], # The mask as an editable layer
|
687 |
+
"composite": mask_array, # The composite image (what's displayed)
|
688 |
+
}
|
689 |
+
except Exception as e:
|
690 |
+
print(f"Error loading mask image: {e}")
|
691 |
+
# Fall back to empty canvas
|
692 |
+
editor_value = black_background
|
693 |
+
|
694 |
+
mask_input = gr.ImageEditor(
|
695 |
+
label="Binary Mask",
|
696 |
+
height=400,
|
697 |
+
width=400,
|
698 |
+
image_mode="L",
|
699 |
+
value=editor_value,
|
700 |
+
type="numpy",
|
701 |
+
brush=gr.Brush(
|
702 |
+
colors=["#ffffff"],
|
703 |
+
color_mode="fixed",
|
704 |
+
default_size=20,
|
705 |
+
default_color="#ffffff",
|
706 |
+
),
|
707 |
+
eraser=gr.Eraser(default_size=20),
|
708 |
+
# show_label=False,
|
709 |
+
show_download_button=True,
|
710 |
+
sources=[],
|
711 |
+
canvas_size=(400, 400),
|
712 |
+
fixed_canvas=True,
|
713 |
+
layers=False, # Enable layers to make the mask editable
|
714 |
+
)
|
715 |
+
|
716 |
+
# # Class selection
|
717 |
+
# with gr.Column(scale=1):
|
718 |
+
# gr.Markdown("#### View Condition")
|
719 |
+
class_selection = gr.Radio(
|
720 |
+
choices=["A4C", "PSAX", "PLAX"],
|
721 |
+
label="View Class",
|
722 |
+
value="A4C",
|
723 |
+
)
|
724 |
+
|
725 |
+
# gr.Markdown("#### Sampling Steps")
|
726 |
+
sampling_steps = gr.Slider(
|
727 |
+
minimum=1,
|
728 |
+
maximum=200,
|
729 |
+
value=100,
|
730 |
+
step=1,
|
731 |
+
label="Number of Sampling Steps",
|
732 |
+
info="Higher values = better quality but slower generation",
|
733 |
+
)
|
734 |
+
|
735 |
+
# Generate button
|
736 |
+
generate_btn = gr.Button("Generate Latent Image", variant="primary")
|
737 |
+
|
738 |
+
# Display area for latent image (grayscale visualization)
|
739 |
+
latent_image_display = gr.Image(
|
740 |
+
label="Latent Image",
|
741 |
+
type="numpy",
|
742 |
+
height=400,
|
743 |
+
width=400,
|
744 |
+
# show_label=False,
|
745 |
+
)
|
746 |
+
|
747 |
+
# Decode button (initially disabled)
|
748 |
+
decode_btn = gr.Button(
|
749 |
+
"Decode to Pixel Space (Optional)",
|
750 |
+
interactive=False,
|
751 |
+
variant="primary",
|
752 |
+
)
|
753 |
+
|
754 |
+
# Display area for decoded image
|
755 |
+
decoded_image_display = gr.Image(
|
756 |
+
label="Decoded Image",
|
757 |
+
type="numpy",
|
758 |
+
height=400,
|
759 |
+
width=400,
|
760 |
+
# show_label=False,
|
761 |
+
)
|
762 |
+
|
763 |
+
# Column 2: Privacy Filter
|
764 |
+
with gr.Column():
|
765 |
+
gr.Markdown(
|
766 |
+
'<img src="https://i.ibb.co/MysCHY1M/h1.png" style="width: 100%; height: 75px; object-fit: contain;">'
|
767 |
+
)
|
768 |
+
gr.Markdown("### Privacy Filter")
|
769 |
+
gr.Markdown(
|
770 |
+
"Checks if the generated image is too similar to training data"
|
771 |
+
)
|
772 |
+
|
773 |
+
# Privacy check button
|
774 |
+
privacy_btn = gr.Button(
|
775 |
+
"Run Privacy Check", interactive=False, variant="primary"
|
776 |
+
)
|
777 |
+
|
778 |
+
# Display area for privacy result status
|
779 |
+
privacy_status = gr.Markdown("No image processed yet")
|
780 |
+
|
781 |
+
# Display area for privacy-filtered latent image
|
782 |
+
filtered_latent_display = gr.Image(
|
783 |
+
label="Filtered Latent Image", type="numpy", height=400, width=400
|
784 |
+
)
|
785 |
+
|
786 |
+
# Column 3: Animation
|
787 |
+
with gr.Column():
|
788 |
+
gr.Markdown(
|
789 |
+
'<img src="https://i.ibb.co/MysCHY1M/h1.png" style="width: 100%; height: 75px; object-fit: contain;">'
|
790 |
+
)
|
791 |
+
gr.Markdown("### Latent Video Generation")
|
792 |
+
|
793 |
+
# Ejection Fraction slider
|
794 |
+
ef_slider = gr.Slider(
|
795 |
+
minimum=0,
|
796 |
+
maximum=100,
|
797 |
+
value=65,
|
798 |
+
label="Ejection Fraction (%)",
|
799 |
+
info="Higher values = stronger contraction",
|
800 |
+
)
|
801 |
+
|
802 |
+
# Add sampling steps slider for animation
|
803 |
+
animation_steps = gr.Slider(
|
804 |
+
minimum=1,
|
805 |
+
maximum=200,
|
806 |
+
value=100,
|
807 |
+
step=1,
|
808 |
+
label="Number of Sampling Steps",
|
809 |
+
info="Higher values = better quality but slower generation",
|
810 |
+
)
|
811 |
+
|
812 |
+
# Add CFG slider
|
813 |
+
cfg_slider = gr.Slider(
|
814 |
+
minimum=0,
|
815 |
+
maximum=10,
|
816 |
+
value=1,
|
817 |
+
step=1,
|
818 |
+
label="Classifier-Free Guidance Scale",
|
819 |
+
# info="Higher values = better quality but slower generation",
|
820 |
+
)
|
821 |
+
|
822 |
+
# Animate button
|
823 |
+
animate_btn = gr.Button(
|
824 |
+
"Generate Video", interactive=False, variant="primary"
|
825 |
+
)
|
826 |
+
|
827 |
+
# Display area for latent animation (grayscale)
|
828 |
+
latent_animation_display = gr.Video(
|
829 |
+
label="Latent Video", format="mp4", autoplay=True, loop=True
|
830 |
+
)
|
831 |
+
|
832 |
+
# Column 4: Video Decoding
|
833 |
+
with gr.Column():
|
834 |
+
gr.Markdown(
|
835 |
+
'<img src="https://i.ibb.co/MysCHY1M/h1.png" style="width: 100%; height: 75px; object-fit: contain;">'
|
836 |
+
)
|
837 |
+
gr.Markdown("### Video Decoding")
|
838 |
+
|
839 |
+
# Decode animation button
|
840 |
+
decode_animation_btn = gr.Button(
|
841 |
+
"Decode Video", interactive=False, variant="primary"
|
842 |
+
)
|
843 |
+
|
844 |
+
# Display area for decoded animation
|
845 |
+
decoded_animation_display = gr.Video(
|
846 |
+
label="Decoded Video", format="mp4", autoplay=True, loop=True
|
847 |
+
)
|
848 |
+
|
849 |
+
# Hidden state variables to store the full latent representations
|
850 |
+
latent_image_state = gr.State(None)
|
851 |
+
filtered_latent_state = gr.State(None)
|
852 |
+
latent_animation_state = gr.State(None)
|
853 |
+
|
854 |
+
# Event handlers
|
855 |
+
generate_btn.click(
|
856 |
+
fn=generate_latent_image,
|
857 |
+
inputs=[mask_input, class_selection, sampling_steps],
|
858 |
+
outputs=[latent_image_state],
|
859 |
+
queue=True,
|
860 |
+
).then(
|
861 |
+
fn=convert_latent_to_display,
|
862 |
+
inputs=[latent_image_state],
|
863 |
+
outputs=[latent_image_display],
|
864 |
+
queue=False,
|
865 |
+
).then(
|
866 |
+
fn=lambda x: gr.Button(
|
867 |
+
interactive=x is not None
|
868 |
+
), # Properly update button state
|
869 |
+
inputs=[latent_image_state],
|
870 |
+
outputs=[decode_btn],
|
871 |
+
queue=False,
|
872 |
+
).then(
|
873 |
+
fn=lambda x: gr.Button(
|
874 |
+
interactive=x is not None
|
875 |
+
), # Properly update button state
|
876 |
+
inputs=[latent_image_state],
|
877 |
+
outputs=[privacy_btn],
|
878 |
+
queue=False,
|
879 |
+
)
|
880 |
+
|
881 |
+
decode_btn.click(
|
882 |
+
fn=decode_latent_to_pixel,
|
883 |
+
inputs=[latent_image_state],
|
884 |
+
outputs=[decoded_image_display],
|
885 |
+
queue=True,
|
886 |
+
).then(
|
887 |
+
fn=lambda x: gr.Button(
|
888 |
+
interactive=x is not None
|
889 |
+
), # Properly update button state
|
890 |
+
inputs=[decoded_image_display],
|
891 |
+
outputs=[privacy_btn],
|
892 |
+
queue=False,
|
893 |
+
)
|
894 |
+
|
895 |
+
privacy_btn.click(
|
896 |
+
fn=check_privacy,
|
897 |
+
inputs=[latent_image_state, class_selection],
|
898 |
+
outputs=[filtered_latent_state, privacy_status],
|
899 |
+
queue=True,
|
900 |
+
).then(
|
901 |
+
fn=convert_latent_to_display,
|
902 |
+
inputs=[filtered_latent_state],
|
903 |
+
outputs=[filtered_latent_display],
|
904 |
+
queue=False,
|
905 |
+
).then(
|
906 |
+
fn=lambda x: gr.Button(
|
907 |
+
interactive=x is not None
|
908 |
+
), # Properly update button state
|
909 |
+
inputs=[filtered_latent_state],
|
910 |
+
outputs=[animate_btn],
|
911 |
+
queue=False,
|
912 |
+
)
|
913 |
+
|
914 |
+
animate_btn.click(
|
915 |
+
fn=generate_animation,
|
916 |
+
inputs=[filtered_latent_state, ef_slider, animation_steps, cfg_slider],
|
917 |
+
outputs=[latent_animation_state],
|
918 |
+
queue=True,
|
919 |
+
).then(
|
920 |
+
fn=latent_animation_to_grayscale,
|
921 |
+
inputs=[latent_animation_state],
|
922 |
+
outputs=[latent_animation_display],
|
923 |
+
queue=False,
|
924 |
+
).then(
|
925 |
+
fn=lambda x: gr.Button(
|
926 |
+
interactive=x is not None
|
927 |
+
), # Properly update button state
|
928 |
+
inputs=[latent_animation_state],
|
929 |
+
outputs=[decode_animation_btn],
|
930 |
+
queue=False,
|
931 |
+
)
|
932 |
+
|
933 |
+
decode_animation_btn.click(
|
934 |
+
fn=decode_animation,
|
935 |
+
inputs=[latent_animation_state], # Remove vae_state from inputs
|
936 |
+
outputs=[decoded_animation_display],
|
937 |
+
queue=True,
|
938 |
+
)
|
939 |
+
|
940 |
+
return demo
|
941 |
+
|
942 |
+
|
943 |
+
if __name__ == "__main__":
|
944 |
+
demo = create_demo()
|
945 |
+
demo.launch()
|
echoflow/common/__init__.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
|
3 |
+
import omegaconf
|
4 |
+
|
5 |
+
from .models import ContrastiveModel, DiffuserSTDiT, ResNet18, SegDiTTransformer2DModel
|
6 |
+
|
7 |
+
|
8 |
+
def parse_klass_arg(value, full_config):
|
9 |
+
"""
|
10 |
+
Parse an argument value that might represent a class, enum, or basic data type.
|
11 |
+
This function tries to dynamically import and resolve nested attributes.
|
12 |
+
It also resolves OmegaConf interpolations if found.
|
13 |
+
"""
|
14 |
+
if isinstance(value, str) and "." in value:
|
15 |
+
# Check if the value is an interpolation and try to resolve it
|
16 |
+
if value.startswith("${") and value.endswith("}"):
|
17 |
+
try:
|
18 |
+
# Attempt to resolve the interpolation directly using OmegaConf
|
19 |
+
value = omegaconf.OmegaConf.resolve(full_config)[value[2:-1]]
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Error resolving OmegaConf interpolation {value}: {e}")
|
22 |
+
return None
|
23 |
+
|
24 |
+
parts = value.split(".")
|
25 |
+
for i in range(len(parts) - 1, 0, -1):
|
26 |
+
module_name = ".".join(parts[:i])
|
27 |
+
attr_name = parts[i]
|
28 |
+
try:
|
29 |
+
module = importlib.import_module(module_name)
|
30 |
+
result = module
|
31 |
+
for j in range(i, len(parts)):
|
32 |
+
result = getattr(result, parts[j])
|
33 |
+
return result
|
34 |
+
except ImportError as e:
|
35 |
+
continue
|
36 |
+
except AttributeError as e:
|
37 |
+
print(
|
38 |
+
f"Warning: Could not resolve attribute {parts[j]} from {module_name}, error: {e}"
|
39 |
+
)
|
40 |
+
continue
|
41 |
+
# print(f"Warning: Failed to import or resolve {value}. Falling back to string.")
|
42 |
+
return (
|
43 |
+
value # Return the original string if no valid import and resolution occurs
|
44 |
+
)
|
45 |
+
return value
|
46 |
+
|
47 |
+
|
48 |
+
def instantiate_class_from_config(config, *args, **kwargs):
|
49 |
+
"""
|
50 |
+
Dynamically instantiate a class based on a configuration object.
|
51 |
+
Supports passing additional positional and keyword arguments.
|
52 |
+
"""
|
53 |
+
module_name, class_name = config.target.rsplit(".", 1)
|
54 |
+
klass = globals().get(class_name)
|
55 |
+
# module = importlib.import_module(module_name)
|
56 |
+
# klass = getattr(module, class_name)
|
57 |
+
|
58 |
+
# Assuming config might be a part of a larger OmegaConf structure:
|
59 |
+
# if not isinstance(config, omegaconf.DictConfig):
|
60 |
+
# config = omegaconf.OmegaConf.create(config)
|
61 |
+
config = omegaconf.OmegaConf.to_container(config, resolve=True)
|
62 |
+
# Resolve args and kwargs from the configuration
|
63 |
+
# conf_args = [parse_klass_arg(arg, config) for arg in config.get('args', [])]
|
64 |
+
# conf_kwargs = {key: parse_klass_arg(value, config) for key, value in config.get('kwargs', {}).items()}
|
65 |
+
conf_kwargs = {
|
66 |
+
key: parse_klass_arg(value, config) for key, value in config["args"].items()
|
67 |
+
}
|
68 |
+
# Combine conf_args with explicitly passed *args
|
69 |
+
all_args = list(args) # + conf_args
|
70 |
+
|
71 |
+
# Combine conf_kwargs with explicitly passed **kwargs
|
72 |
+
all_kwargs = {**conf_kwargs, **kwargs}
|
73 |
+
|
74 |
+
# Instantiate the class with the processed arguments
|
75 |
+
instance = klass(*all_args, **all_kwargs)
|
76 |
+
return instance
|
77 |
+
|
78 |
+
|
79 |
+
def unscale_latents(latents, vae_scaling=None):
|
80 |
+
if vae_scaling is not None:
|
81 |
+
if latents.ndim == 4:
|
82 |
+
v = (1, -1, 1, 1)
|
83 |
+
elif latents.ndim == 5:
|
84 |
+
v = (1, -1, 1, 1, 1)
|
85 |
+
else:
|
86 |
+
raise ValueError("Latents should be 4D or 5D")
|
87 |
+
latents *= vae_scaling["std"].view(*v)
|
88 |
+
latents += vae_scaling["mean"].view(*v)
|
89 |
+
|
90 |
+
return latents
|
echoflow/common/models.py
ADDED
@@ -0,0 +1,1730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file contains modified code from the HuggingFace Diffusers library.
|
2 |
+
|
3 |
+
import math
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch._dynamo
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import xformers
|
13 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
14 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
15 |
+
from diffusers.models.attention import BasicTransformerBlock
|
16 |
+
from diffusers.models.attention_processor import (
|
17 |
+
CROSS_ATTENTION_PROCESSORS,
|
18 |
+
AttentionProcessor,
|
19 |
+
AttnProcessor,
|
20 |
+
)
|
21 |
+
from diffusers.models.embeddings import PatchEmbed, TimestepEmbedding, Timesteps
|
22 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
23 |
+
from diffusers.models.modeling_utils import ModelMixin
|
24 |
+
from diffusers.models.unets.unet_3d_blocks import UNetMidBlockSpatioTemporal
|
25 |
+
from diffusers.models.unets.unet_3d_blocks import get_down_block as get_down_block_3d
|
26 |
+
from diffusers.models.unets.unet_3d_blocks import get_up_block as get_up_block_3d
|
27 |
+
from diffusers.utils import BaseOutput, is_torch_version
|
28 |
+
from einops import rearrange
|
29 |
+
from timm.layers.drop import DropPath
|
30 |
+
from timm.layers.mlp import Mlp
|
31 |
+
from torchvision.models import resnet18
|
32 |
+
|
33 |
+
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
34 |
+
|
35 |
+
|
36 |
+
class SegDiTTransformer2DModel(ModelMixin, ConfigMixin):
|
37 |
+
r"""
|
38 |
+
A 2D Transformer model as introduced in DiT (https://arxiv.org/abs/2212.09748).
|
39 |
+
|
40 |
+
Parameters:
|
41 |
+
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
|
42 |
+
attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
|
43 |
+
in_channels (int, defaults to 4): The number of channels in the input.
|
44 |
+
out_channels (int, optional):
|
45 |
+
The number of channels in the output. Specify this parameter if the output channel number differs from the
|
46 |
+
input.
|
47 |
+
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
|
48 |
+
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
|
49 |
+
norm_num_groups (int, optional, defaults to 32):
|
50 |
+
Number of groups for group normalization within Transformer blocks.
|
51 |
+
attention_bias (bool, optional, defaults to True):
|
52 |
+
Configure if the Transformer blocks' attention should contain a bias parameter.
|
53 |
+
sample_size (int, defaults to 32):
|
54 |
+
The width of the latent images. This parameter is fixed during training.
|
55 |
+
patch_size (int, defaults to 2):
|
56 |
+
Size of the patches the model processes, relevant for architectures working on non-sequential data.
|
57 |
+
activation_fn (str, optional, defaults to "gelu-approximate"):
|
58 |
+
Activation function to use in feed-forward networks within Transformer blocks.
|
59 |
+
num_embeds_ada_norm (int, optional, defaults to 1000):
|
60 |
+
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
|
61 |
+
inference.
|
62 |
+
upcast_attention (bool, optional, defaults to False):
|
63 |
+
If true, upcasts the attention mechanism dimensions for potentially improved performance.
|
64 |
+
norm_type (str, optional, defaults to "ada_norm_zero"):
|
65 |
+
Specifies the type of normalization used, can be 'ada_norm_zero'.
|
66 |
+
norm_elementwise_affine (bool, optional, defaults to False):
|
67 |
+
If true, enables element-wise affine parameters in the normalization layers.
|
68 |
+
norm_eps (float, optional, defaults to 1e-5):
|
69 |
+
A small constant added to the denominator in normalization layers to prevent division by zero.
|
70 |
+
"""
|
71 |
+
|
72 |
+
_supports_gradient_checkpointing = True
|
73 |
+
|
74 |
+
@register_to_config
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
num_attention_heads: int = 16,
|
78 |
+
attention_head_dim: int = 72,
|
79 |
+
in_channels: int = 4,
|
80 |
+
out_channels: Optional[int] = None,
|
81 |
+
num_layers: int = 28,
|
82 |
+
dropout: float = 0.0,
|
83 |
+
norm_num_groups: int = 32,
|
84 |
+
attention_bias: bool = True,
|
85 |
+
sample_size: int = 32,
|
86 |
+
patch_size: int = 2,
|
87 |
+
activation_fn: str = "gelu-approximate",
|
88 |
+
num_embeds_ada_norm: Optional[int] = 1000,
|
89 |
+
upcast_attention: bool = False,
|
90 |
+
norm_type: str = "ada_norm_zero",
|
91 |
+
norm_elementwise_affine: bool = False,
|
92 |
+
norm_eps: float = 1e-5,
|
93 |
+
):
|
94 |
+
super().__init__()
|
95 |
+
|
96 |
+
# Validate inputs.
|
97 |
+
if norm_type != "ada_norm_zero":
|
98 |
+
raise NotImplementedError(
|
99 |
+
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
|
100 |
+
)
|
101 |
+
elif norm_type == "ada_norm_zero" and num_embeds_ada_norm is None:
|
102 |
+
raise ValueError(
|
103 |
+
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
|
104 |
+
)
|
105 |
+
|
106 |
+
# Set some common variables used across the board.
|
107 |
+
self.attention_head_dim = attention_head_dim
|
108 |
+
self.inner_dim = (
|
109 |
+
self.config.num_attention_heads * self.config.attention_head_dim
|
110 |
+
)
|
111 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
112 |
+
self.gradient_checkpointing = False
|
113 |
+
|
114 |
+
# 2. Initialize the position embedding and transformer blocks.
|
115 |
+
self.height = self.config.sample_size
|
116 |
+
self.width = self.config.sample_size
|
117 |
+
|
118 |
+
self.patch_size = self.config.patch_size
|
119 |
+
self.pos_embed = PatchEmbed(
|
120 |
+
height=self.config.sample_size,
|
121 |
+
width=self.config.sample_size,
|
122 |
+
patch_size=self.config.patch_size,
|
123 |
+
in_channels=self.config.in_channels,
|
124 |
+
embed_dim=self.inner_dim,
|
125 |
+
)
|
126 |
+
|
127 |
+
self.transformer_blocks = nn.ModuleList(
|
128 |
+
[
|
129 |
+
BasicTransformerBlock(
|
130 |
+
self.inner_dim,
|
131 |
+
self.config.num_attention_heads,
|
132 |
+
self.config.attention_head_dim,
|
133 |
+
dropout=self.config.dropout,
|
134 |
+
activation_fn=self.config.activation_fn,
|
135 |
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
136 |
+
attention_bias=self.config.attention_bias,
|
137 |
+
upcast_attention=self.config.upcast_attention,
|
138 |
+
norm_type=norm_type,
|
139 |
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
140 |
+
norm_eps=self.config.norm_eps,
|
141 |
+
)
|
142 |
+
for _ in range(self.config.num_layers)
|
143 |
+
]
|
144 |
+
)
|
145 |
+
|
146 |
+
# 3. Output blocks.
|
147 |
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
148 |
+
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
|
149 |
+
self.proj_out_2 = nn.Linear(
|
150 |
+
self.inner_dim,
|
151 |
+
self.config.patch_size * self.config.patch_size * self.out_channels,
|
152 |
+
)
|
153 |
+
|
154 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
155 |
+
if hasattr(module, "gradient_checkpointing"):
|
156 |
+
module.gradient_checkpointing = value
|
157 |
+
|
158 |
+
def forward(
|
159 |
+
self,
|
160 |
+
hidden_states: torch.Tensor,
|
161 |
+
timestep: Optional[torch.LongTensor] = None,
|
162 |
+
class_labels: Optional[torch.LongTensor] = None,
|
163 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
164 |
+
segmentation: Optional[torch.LongTensor] = None,
|
165 |
+
return_dict: bool = True,
|
166 |
+
):
|
167 |
+
"""
|
168 |
+
The [`DiTTransformer2DModel`] forward method.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
172 |
+
Input `hidden_states`.
|
173 |
+
timestep ( `torch.LongTensor`, *optional*):
|
174 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
175 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
176 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
177 |
+
`AdaLayerZeroNorm`.
|
178 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
179 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
180 |
+
`self.processor` in
|
181 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
182 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
183 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
184 |
+
tuple.
|
185 |
+
|
186 |
+
Returns:
|
187 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
188 |
+
`tuple` where the first element is the sample tensor.
|
189 |
+
"""
|
190 |
+
|
191 |
+
# 0. If segmentation is provided, apply it to the input.
|
192 |
+
if segmentation is not None:
|
193 |
+
hidden_states = torch.cat([hidden_states, segmentation], dim=1) # B C+1 H W
|
194 |
+
|
195 |
+
# 1. Input
|
196 |
+
height, width = (
|
197 |
+
hidden_states.shape[-2] // self.patch_size,
|
198 |
+
hidden_states.shape[-1] // self.patch_size,
|
199 |
+
)
|
200 |
+
hidden_states = self.pos_embed(hidden_states)
|
201 |
+
|
202 |
+
# 2. Blocks
|
203 |
+
for block in self.transformer_blocks:
|
204 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
205 |
+
|
206 |
+
def create_custom_forward(module, return_dict=None):
|
207 |
+
def custom_forward(*inputs):
|
208 |
+
if return_dict is not None:
|
209 |
+
return module(*inputs, return_dict=return_dict)
|
210 |
+
else:
|
211 |
+
return module(*inputs)
|
212 |
+
|
213 |
+
return custom_forward
|
214 |
+
|
215 |
+
ckpt_kwargs: Dict[str, Any] = (
|
216 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
217 |
+
)
|
218 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
219 |
+
create_custom_forward(block),
|
220 |
+
hidden_states,
|
221 |
+
None,
|
222 |
+
None,
|
223 |
+
None,
|
224 |
+
timestep,
|
225 |
+
cross_attention_kwargs,
|
226 |
+
class_labels,
|
227 |
+
**ckpt_kwargs,
|
228 |
+
)
|
229 |
+
else:
|
230 |
+
hidden_states = block(
|
231 |
+
hidden_states,
|
232 |
+
attention_mask=None,
|
233 |
+
encoder_hidden_states=None,
|
234 |
+
encoder_attention_mask=None,
|
235 |
+
timestep=timestep,
|
236 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
237 |
+
class_labels=class_labels,
|
238 |
+
)
|
239 |
+
|
240 |
+
# 3. Output
|
241 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
242 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
243 |
+
)
|
244 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
245 |
+
hidden_states = (
|
246 |
+
self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
247 |
+
)
|
248 |
+
hidden_states = self.proj_out_2(hidden_states)
|
249 |
+
|
250 |
+
# unpatchify
|
251 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
252 |
+
hidden_states = hidden_states.reshape(
|
253 |
+
shape=(
|
254 |
+
-1,
|
255 |
+
height,
|
256 |
+
width,
|
257 |
+
self.patch_size,
|
258 |
+
self.patch_size,
|
259 |
+
self.out_channels,
|
260 |
+
)
|
261 |
+
)
|
262 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
263 |
+
output = hidden_states.reshape(
|
264 |
+
shape=(
|
265 |
+
-1,
|
266 |
+
self.out_channels,
|
267 |
+
height * self.patch_size,
|
268 |
+
width * self.patch_size,
|
269 |
+
)
|
270 |
+
)
|
271 |
+
|
272 |
+
if not return_dict:
|
273 |
+
return (output,)
|
274 |
+
|
275 |
+
return Transformer2DModelOutput(sample=output)
|
276 |
+
|
277 |
+
|
278 |
+
def get_2d_sincos_pos_embed(
|
279 |
+
embed_dim, grid_size, cls_token=False, extra_tokens=0, scale=1.0, base_size=None
|
280 |
+
):
|
281 |
+
"""
|
282 |
+
grid_size: int of the grid height and width
|
283 |
+
return:
|
284 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
285 |
+
"""
|
286 |
+
if not isinstance(grid_size, tuple):
|
287 |
+
grid_size = (grid_size, grid_size)
|
288 |
+
|
289 |
+
grid_h = np.arange(grid_size[0], dtype=np.float32) / scale
|
290 |
+
grid_w = np.arange(grid_size[1], dtype=np.float32) / scale
|
291 |
+
if base_size is not None:
|
292 |
+
grid_h *= base_size / grid_size[0]
|
293 |
+
grid_w *= base_size / grid_size[1]
|
294 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
295 |
+
grid = np.stack(grid, axis=0)
|
296 |
+
|
297 |
+
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
|
298 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
299 |
+
if cls_token and extra_tokens > 0:
|
300 |
+
pos_embed = np.concatenate(
|
301 |
+
[np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0
|
302 |
+
)
|
303 |
+
return pos_embed
|
304 |
+
|
305 |
+
|
306 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
307 |
+
assert embed_dim % 2 == 0
|
308 |
+
|
309 |
+
# use half of dimensions to encode grid_h
|
310 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
311 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
312 |
+
|
313 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
314 |
+
return emb
|
315 |
+
|
316 |
+
|
317 |
+
def get_1d_sincos_pos_embed(embed_dim, length, scale=1.0):
|
318 |
+
pos = np.arange(0, length)[..., None] / scale
|
319 |
+
return get_1d_sincos_pos_embed_from_grid(embed_dim, pos)
|
320 |
+
|
321 |
+
|
322 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
323 |
+
"""
|
324 |
+
embed_dim: output dimension for each position
|
325 |
+
pos: a list of positions to be encoded: size (M,)
|
326 |
+
out: (M, D)
|
327 |
+
"""
|
328 |
+
assert embed_dim % 2 == 0
|
329 |
+
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
330 |
+
omega /= embed_dim / 2.0
|
331 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
332 |
+
|
333 |
+
pos = pos.reshape(-1) # (M,)
|
334 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
335 |
+
|
336 |
+
emb_sin = np.sin(out) # (M, D/2)
|
337 |
+
emb_cos = np.cos(out) # (M, D/2)
|
338 |
+
|
339 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
340 |
+
return emb
|
341 |
+
|
342 |
+
|
343 |
+
def t2i_modulate(x, shift, scale):
|
344 |
+
return x * (1 + scale) + shift
|
345 |
+
|
346 |
+
|
347 |
+
class PatchEmbed3D(nn.Module):
|
348 |
+
"""Video to Patch Embedding.
|
349 |
+
|
350 |
+
Args:
|
351 |
+
patch_size (int): Patch token size. Default: (2,4,4).
|
352 |
+
in_chans (int): Number of input video channels. Default: 3.
|
353 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
354 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
355 |
+
"""
|
356 |
+
|
357 |
+
def __init__(
|
358 |
+
self,
|
359 |
+
patch_size=(2, 4, 4),
|
360 |
+
in_chans=3,
|
361 |
+
embed_dim=96,
|
362 |
+
norm_layer=None,
|
363 |
+
flatten=True,
|
364 |
+
):
|
365 |
+
super().__init__()
|
366 |
+
self.patch_size = patch_size
|
367 |
+
self.flatten = flatten
|
368 |
+
|
369 |
+
self.in_chans = in_chans
|
370 |
+
self.embed_dim = embed_dim
|
371 |
+
|
372 |
+
self.proj = nn.Conv3d(
|
373 |
+
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
|
374 |
+
)
|
375 |
+
if norm_layer is not None:
|
376 |
+
self.norm = norm_layer(embed_dim)
|
377 |
+
else:
|
378 |
+
self.norm = None
|
379 |
+
|
380 |
+
def forward(self, x):
|
381 |
+
"""Forward function."""
|
382 |
+
# padding
|
383 |
+
_, _, D, H, W = x.size()
|
384 |
+
if W % self.patch_size[2] != 0:
|
385 |
+
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
|
386 |
+
if H % self.patch_size[1] != 0:
|
387 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
|
388 |
+
if D % self.patch_size[0] != 0:
|
389 |
+
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))
|
390 |
+
|
391 |
+
x = self.proj(x) # (B C T H W)
|
392 |
+
if self.norm is not None:
|
393 |
+
D, Wh, Ww = x.size(2), x.size(3), x.size(4)
|
394 |
+
x = x.flatten(2).transpose(1, 2)
|
395 |
+
x = self.norm(x)
|
396 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
|
397 |
+
if self.flatten:
|
398 |
+
x = x.flatten(2).transpose(1, 2) # BCTHW -> BNC
|
399 |
+
return x
|
400 |
+
|
401 |
+
|
402 |
+
class Attention(nn.Module):
|
403 |
+
def __init__(
|
404 |
+
self,
|
405 |
+
dim: int,
|
406 |
+
num_heads: int = 8,
|
407 |
+
qkv_bias: bool = False,
|
408 |
+
qk_norm: bool = False,
|
409 |
+
attn_drop: float = 0.0,
|
410 |
+
proj_drop: float = 0.0,
|
411 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
412 |
+
enable_flashattn: bool = False,
|
413 |
+
) -> None:
|
414 |
+
super().__init__()
|
415 |
+
assert dim % num_heads == 0, "dim should be divisible by num_heads"
|
416 |
+
self.dim = dim
|
417 |
+
self.num_heads = num_heads
|
418 |
+
self.head_dim = dim // num_heads
|
419 |
+
self.scale = self.head_dim**-0.5
|
420 |
+
|
421 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
422 |
+
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
423 |
+
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
424 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
425 |
+
self.proj = nn.Linear(dim, dim)
|
426 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
427 |
+
|
428 |
+
if enable_flashattn:
|
429 |
+
print(
|
430 |
+
"[WARNING] FlashAttention cannot be used. Set enable_flashattn to False."
|
431 |
+
)
|
432 |
+
|
433 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
434 |
+
B, N, C = x.shape
|
435 |
+
qkv = self.qkv(x)
|
436 |
+
qkv_shape = (B, N, 3, self.num_heads, self.head_dim)
|
437 |
+
qkv_permute_shape = (2, 0, 3, 1, 4)
|
438 |
+
qkv = qkv.view(qkv_shape).permute(qkv_permute_shape)
|
439 |
+
q, k, v = qkv.unbind(0)
|
440 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
441 |
+
|
442 |
+
dtype = q.dtype
|
443 |
+
q = q * self.scale
|
444 |
+
attn = q @ k.transpose(-2, -1) # translate attn to float32
|
445 |
+
attn = attn.to(torch.float32)
|
446 |
+
attn = attn.softmax(dim=-1)
|
447 |
+
attn = attn.to(dtype) # cast back attn to original dtype
|
448 |
+
attn = self.attn_drop(attn)
|
449 |
+
x = attn @ v
|
450 |
+
|
451 |
+
x_output_shape = (B, N, C)
|
452 |
+
x = x.reshape(x_output_shape)
|
453 |
+
x = self.proj(x)
|
454 |
+
x = self.proj_drop(x)
|
455 |
+
return x
|
456 |
+
|
457 |
+
|
458 |
+
class MultiHeadCrossAttention(nn.Module):
|
459 |
+
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0):
|
460 |
+
super(MultiHeadCrossAttention, self).__init__()
|
461 |
+
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
|
462 |
+
|
463 |
+
self.d_model = d_model
|
464 |
+
self.num_heads = num_heads
|
465 |
+
self.head_dim = d_model // num_heads
|
466 |
+
|
467 |
+
self.q_linear = nn.Linear(d_model, d_model)
|
468 |
+
self.kv_linear = nn.Linear(d_model, d_model * 2)
|
469 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
470 |
+
self.proj = nn.Linear(d_model, d_model)
|
471 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
472 |
+
|
473 |
+
@torch._dynamo.disable
|
474 |
+
def forward(self, x, cond, mask=None):
|
475 |
+
# query/value: img tokens; key: condition; mask: if padding tokens
|
476 |
+
B, N, C = x.shape
|
477 |
+
|
478 |
+
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
|
479 |
+
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
|
480 |
+
k, v = kv.unbind(2)
|
481 |
+
|
482 |
+
attn_bias = None
|
483 |
+
if mask is not None:
|
484 |
+
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask)
|
485 |
+
x = xformers.ops.memory_efficient_attention(
|
486 |
+
q, k, v, p=self.attn_drop.p, attn_bias=attn_bias
|
487 |
+
)
|
488 |
+
|
489 |
+
x = x.view(B, -1, C)
|
490 |
+
x = self.proj(x)
|
491 |
+
x = self.proj_drop(x)
|
492 |
+
return x
|
493 |
+
|
494 |
+
|
495 |
+
class TimestepEmbedder(nn.Module):
|
496 |
+
"""
|
497 |
+
Embeds scalar timesteps into vector representations.
|
498 |
+
"""
|
499 |
+
|
500 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
501 |
+
super().__init__()
|
502 |
+
self.mlp = nn.Sequential(
|
503 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
504 |
+
nn.SiLU(),
|
505 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
506 |
+
)
|
507 |
+
self.frequency_embedding_size = frequency_embedding_size
|
508 |
+
|
509 |
+
@staticmethod
|
510 |
+
def timestep_embedding(t, dim, max_period=10000):
|
511 |
+
"""
|
512 |
+
Create sinusoidal timestep embeddings.
|
513 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
514 |
+
These may be fractional.
|
515 |
+
:param dim: the dimension of the output.
|
516 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
517 |
+
:return: an (N, D) Tensor of positional embeddings.
|
518 |
+
"""
|
519 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
520 |
+
half = dim // 2
|
521 |
+
freqs = torch.exp(
|
522 |
+
-math.log(max_period)
|
523 |
+
* torch.arange(start=0, end=half, dtype=torch.float32)
|
524 |
+
/ half
|
525 |
+
)
|
526 |
+
freqs = freqs.to(device=t.device)
|
527 |
+
args = t[:, None].float() * freqs[None]
|
528 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
529 |
+
if dim % 2:
|
530 |
+
embedding = torch.cat(
|
531 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
532 |
+
)
|
533 |
+
return embedding
|
534 |
+
|
535 |
+
def forward(self, t, dtype):
|
536 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
537 |
+
if t_freq.dtype != dtype:
|
538 |
+
t_freq = t_freq.to(dtype)
|
539 |
+
t_emb = self.mlp(t_freq)
|
540 |
+
return t_emb
|
541 |
+
|
542 |
+
|
543 |
+
class CaptionEmbedder(nn.Module):
|
544 |
+
"""
|
545 |
+
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
546 |
+
"""
|
547 |
+
|
548 |
+
def __init__(
|
549 |
+
self,
|
550 |
+
in_channels,
|
551 |
+
hidden_size,
|
552 |
+
uncond_prob,
|
553 |
+
act_layer=nn.GELU(approximate="tanh"),
|
554 |
+
token_num=120,
|
555 |
+
):
|
556 |
+
super().__init__()
|
557 |
+
self.y_proj = Mlp(
|
558 |
+
in_features=in_channels,
|
559 |
+
hidden_features=hidden_size,
|
560 |
+
out_features=hidden_size,
|
561 |
+
act_layer=act_layer,
|
562 |
+
drop=0,
|
563 |
+
)
|
564 |
+
self.register_buffer(
|
565 |
+
"y_embedding",
|
566 |
+
nn.Parameter(torch.randn(token_num, in_channels) / in_channels**0.5),
|
567 |
+
)
|
568 |
+
self.uncond_prob = uncond_prob
|
569 |
+
|
570 |
+
def token_drop(self, caption, force_drop_ids=None):
|
571 |
+
"""
|
572 |
+
Drops labels to enable classifier-free guidance.
|
573 |
+
"""
|
574 |
+
if force_drop_ids is None:
|
575 |
+
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
|
576 |
+
else:
|
577 |
+
drop_ids = force_drop_ids == 1
|
578 |
+
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
|
579 |
+
return caption
|
580 |
+
|
581 |
+
@torch._dynamo.disable
|
582 |
+
def forward(self, caption, train, force_drop_ids=None):
|
583 |
+
if train:
|
584 |
+
assert caption.shape[2:] == self.y_embedding.shape
|
585 |
+
use_dropout = self.uncond_prob > 0
|
586 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
587 |
+
caption = self.token_drop(caption, force_drop_ids)
|
588 |
+
caption = self.y_proj(caption)
|
589 |
+
return caption
|
590 |
+
|
591 |
+
|
592 |
+
class T2IFinalLayer(nn.Module):
|
593 |
+
"""
|
594 |
+
The final layer of PixArt.
|
595 |
+
"""
|
596 |
+
|
597 |
+
def __init__(self, hidden_size, num_patch, out_channels):
|
598 |
+
super().__init__()
|
599 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
600 |
+
self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True)
|
601 |
+
self.scale_shift_table = nn.Parameter(
|
602 |
+
torch.randn(2, hidden_size) / hidden_size**0.5
|
603 |
+
)
|
604 |
+
self.out_channels = out_channels
|
605 |
+
|
606 |
+
def forward(self, x, t):
|
607 |
+
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1)
|
608 |
+
x = t2i_modulate(self.norm_final(x), shift, scale)
|
609 |
+
x = self.linear(x)
|
610 |
+
return x
|
611 |
+
|
612 |
+
|
613 |
+
class STDiTBlock(nn.Module):
|
614 |
+
"""
|
615 |
+
STDiT: Spatio-Temporal Diffusion Transformer.
|
616 |
+
|
617 |
+
Args:
|
618 |
+
hidden_size (int): Hidden size of the model.
|
619 |
+
num_heads (int): Number of attention heads.
|
620 |
+
d_s (int): Spatial patch size.
|
621 |
+
d_t (int): Temporal patch size.
|
622 |
+
mlp_ratio (float): Ratio of hidden to mlp hidden size.
|
623 |
+
drop_path (float): Drop path rate.
|
624 |
+
enable_flashattn (bool): Enable FlashAttention.
|
625 |
+
"""
|
626 |
+
|
627 |
+
def __init__(
|
628 |
+
self,
|
629 |
+
hidden_size,
|
630 |
+
num_heads,
|
631 |
+
d_s=None,
|
632 |
+
d_t=None,
|
633 |
+
mlp_ratio=4.0,
|
634 |
+
drop_path=0.0,
|
635 |
+
enable_flashattn=False,
|
636 |
+
uncond=False,
|
637 |
+
):
|
638 |
+
super().__init__()
|
639 |
+
self.hidden_size = hidden_size
|
640 |
+
self.enable_flashattn = enable_flashattn
|
641 |
+
|
642 |
+
self.attn_cls = Attention
|
643 |
+
self.mha_cls = MultiHeadCrossAttention
|
644 |
+
|
645 |
+
self.norm1 = nn.LayerNorm(hidden_size, eps=1e-6, elementwise_affine=False)
|
646 |
+
self.attn = self.attn_cls(
|
647 |
+
hidden_size,
|
648 |
+
num_heads=num_heads,
|
649 |
+
qkv_bias=True,
|
650 |
+
enable_flashattn=False,
|
651 |
+
)
|
652 |
+
if uncond:
|
653 |
+
self.cross_attn = self.mha_cls(hidden_size, num_heads)
|
654 |
+
self.norm2 = nn.LayerNorm(hidden_size, eps=1e-6, elementwise_affine=False)
|
655 |
+
self.mlp = Mlp(
|
656 |
+
in_features=hidden_size,
|
657 |
+
hidden_features=int(hidden_size * mlp_ratio),
|
658 |
+
act_layer=approx_gelu,
|
659 |
+
drop=0,
|
660 |
+
)
|
661 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
662 |
+
self.scale_shift_table = nn.Parameter(
|
663 |
+
torch.randn(6, hidden_size) / hidden_size**0.5
|
664 |
+
)
|
665 |
+
|
666 |
+
# temporal attention
|
667 |
+
self.d_s = d_s
|
668 |
+
self.d_t = d_t
|
669 |
+
|
670 |
+
self.attn_temp = self.attn_cls(
|
671 |
+
hidden_size,
|
672 |
+
num_heads=num_heads,
|
673 |
+
qkv_bias=True,
|
674 |
+
enable_flashattn=self.enable_flashattn,
|
675 |
+
)
|
676 |
+
|
677 |
+
def forward(self, x, t, y=None, mask=None, tpe=None):
|
678 |
+
"""
|
679 |
+
Args:
|
680 |
+
x (torch.Tensor): noisy input tensor of shape [B, N, C]
|
681 |
+
y (torch.Tensor): conditional input tensor of shape [B, N, C]
|
682 |
+
t (torch.Tensor): input tensor; of shape [B, C]
|
683 |
+
mask (torch.Tensor): input tensor; of shape [B, N]
|
684 |
+
tpe (torch.Tensor): input tensor; of shape [B, C]
|
685 |
+
"""
|
686 |
+
B, N, C = x.shape
|
687 |
+
|
688 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
689 |
+
self.scale_shift_table[None] + t.reshape(B, 6, -1)
|
690 |
+
).chunk(6, dim=1)
|
691 |
+
x_m = t2i_modulate(self.norm1(x), shift_msa, scale_msa)
|
692 |
+
|
693 |
+
# spatial branch
|
694 |
+
x_s = rearrange(x_m, "B (T S) C -> (B T) S C", T=self.d_t, S=self.d_s)
|
695 |
+
x_s = self.attn(x_s)
|
696 |
+
x_s = rearrange(x_s, "(B T) S C -> B (T S) C", T=self.d_t, S=self.d_s)
|
697 |
+
x = x + self.drop_path(gate_msa * x_s)
|
698 |
+
|
699 |
+
# temporal branch
|
700 |
+
x_t = rearrange(x, "B (T S) C -> (B S) T C", T=self.d_t, S=self.d_s)
|
701 |
+
if tpe is not None:
|
702 |
+
x_t = x_t + tpe
|
703 |
+
x_t = self.attn_temp(x_t)
|
704 |
+
x_t = rearrange(x_t, "(B S) T C -> B (T S) C", T=self.d_t, S=self.d_s)
|
705 |
+
x = x + self.drop_path(gate_msa * x_t)
|
706 |
+
|
707 |
+
# cross attn
|
708 |
+
if y is not None:
|
709 |
+
x = x + self.cross_attn(x, y, mask)
|
710 |
+
|
711 |
+
# mlp
|
712 |
+
x = x + self.drop_path(
|
713 |
+
gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))
|
714 |
+
)
|
715 |
+
|
716 |
+
return x
|
717 |
+
|
718 |
+
|
719 |
+
# | Model | Layers N | Hidden size d | Heads | Gflops (I=32, p=4) |
|
720 |
+
# |-------|----------|---------------|-------|---------------------|
|
721 |
+
# | DiT-S | 12 | 384 | 6 | 1.4 |
|
722 |
+
# | DiT-B | 12 | 768 | 12 | 5.6 |
|
723 |
+
# | DiT-L | 24 | 1024 | 16 | 19.7 |
|
724 |
+
# | DiT-XL| 28 | 1152 | 16 | 29.1 |
|
725 |
+
class STDiT(nn.Module):
|
726 |
+
def __init__(
|
727 |
+
self,
|
728 |
+
input_size=(1, 32, 32), # T, H, W
|
729 |
+
in_channels=4,
|
730 |
+
out_channels=4,
|
731 |
+
patch_size=(1, 2, 2), # T, H, W
|
732 |
+
hidden_size=1152, #
|
733 |
+
depth=28, # Number of layers
|
734 |
+
num_heads=16,
|
735 |
+
mlp_ratio=4.0,
|
736 |
+
class_dropout_prob=0.1,
|
737 |
+
drop_path=0.0,
|
738 |
+
no_temporal_pos_emb=False,
|
739 |
+
caption_channels=4096, # 0 to disable
|
740 |
+
model_max_length=120,
|
741 |
+
space_scale=1.0,
|
742 |
+
time_scale=1.0,
|
743 |
+
enable_flashattn=False,
|
744 |
+
):
|
745 |
+
super().__init__()
|
746 |
+
self.in_channels = in_channels
|
747 |
+
self.out_channels = out_channels
|
748 |
+
self.hidden_size = hidden_size
|
749 |
+
self.patch_size = patch_size
|
750 |
+
self.input_size = input_size
|
751 |
+
num_patches = np.prod([input_size[i] // patch_size[i] for i in range(3)])
|
752 |
+
self.num_patches = num_patches
|
753 |
+
self.num_temporal = input_size[0] // patch_size[0]
|
754 |
+
self.num_spatial = num_patches // self.num_temporal
|
755 |
+
self.num_heads = num_heads
|
756 |
+
self.no_temporal_pos_emb = no_temporal_pos_emb
|
757 |
+
self.depth = depth
|
758 |
+
self.mlp_ratio = mlp_ratio
|
759 |
+
self.enable_flashattn = enable_flashattn
|
760 |
+
self.space_scale = space_scale
|
761 |
+
self.time_scale = time_scale
|
762 |
+
|
763 |
+
if caption_channels == 0:
|
764 |
+
print("Warning: caption_channels is 0, disabling text conditioning.")
|
765 |
+
|
766 |
+
self.register_buffer("pos_embed", self.get_spatial_pos_embed())
|
767 |
+
self.register_buffer("pos_embed_temporal", self.get_temporal_pos_embed())
|
768 |
+
|
769 |
+
self.x_embedder = PatchEmbed3D(patch_size, in_channels, hidden_size)
|
770 |
+
self.t_embedder = TimestepEmbedder(hidden_size)
|
771 |
+
self.t_block = nn.Sequential(
|
772 |
+
nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)
|
773 |
+
)
|
774 |
+
self.y_embedder = (
|
775 |
+
CaptionEmbedder(
|
776 |
+
in_channels=caption_channels,
|
777 |
+
hidden_size=hidden_size,
|
778 |
+
uncond_prob=class_dropout_prob,
|
779 |
+
act_layer=approx_gelu,
|
780 |
+
token_num=model_max_length,
|
781 |
+
)
|
782 |
+
if caption_channels > 0
|
783 |
+
else None
|
784 |
+
)
|
785 |
+
|
786 |
+
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)]
|
787 |
+
self.blocks = nn.ModuleList(
|
788 |
+
[
|
789 |
+
STDiTBlock(
|
790 |
+
self.hidden_size,
|
791 |
+
self.num_heads,
|
792 |
+
mlp_ratio=self.mlp_ratio,
|
793 |
+
drop_path=drop_path[i],
|
794 |
+
enable_flashattn=self.enable_flashattn,
|
795 |
+
d_t=self.num_temporal,
|
796 |
+
d_s=self.num_spatial,
|
797 |
+
uncond=(caption_channels > 0),
|
798 |
+
)
|
799 |
+
for i in range(self.depth)
|
800 |
+
]
|
801 |
+
)
|
802 |
+
self.final_layer = T2IFinalLayer(
|
803 |
+
hidden_size, np.prod(self.patch_size), self.out_channels
|
804 |
+
)
|
805 |
+
|
806 |
+
# init model
|
807 |
+
self.initialize_weights()
|
808 |
+
self.initialize_temporal()
|
809 |
+
|
810 |
+
# sequence parallel related configs
|
811 |
+
self.sp_rank = None
|
812 |
+
|
813 |
+
def forward(self, x, timestep, y=None, mask=None, cond_image=None):
|
814 |
+
"""
|
815 |
+
Forward pass of STDiT.
|
816 |
+
Args:
|
817 |
+
x (torch.Tensor): latent representation of video; of shape [B, C, T, H, W]
|
818 |
+
timestep (torch.Tensor): diffusion time steps; of shape [B]
|
819 |
+
y (torch.Tensor): representation of prompts; of shape [B, 1, N_token, C]
|
820 |
+
mask (torch.Tensor): mask for selecting prompt tokens; of shape [B, N_token]
|
821 |
+
|
822 |
+
Returns:
|
823 |
+
x (torch.Tensor): output latent representation; of shape [B, C, T, H, W]
|
824 |
+
"""
|
825 |
+
|
826 |
+
# x = x.to(self.dtype)
|
827 |
+
# timestep = timestep.to(self.dtype)
|
828 |
+
# y = y.to(self.dtype)
|
829 |
+
|
830 |
+
# embedding
|
831 |
+
x = self.x_embedder(x) # [B, N, C]
|
832 |
+
# print(x.shape, self.num_temporal, self.num_spatial)
|
833 |
+
x = rearrange(
|
834 |
+
x, "B (T S) C -> B T S C", T=self.num_temporal, S=self.num_spatial
|
835 |
+
)
|
836 |
+
x = x + self.pos_embed
|
837 |
+
x = rearrange(x, "B T S C -> B (T S) C")
|
838 |
+
|
839 |
+
# shard over the sequence dim if sp is enabled
|
840 |
+
# if self.enable_sequence_parallelism:
|
841 |
+
# x = split_forward_gather_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="down")
|
842 |
+
|
843 |
+
t = self.t_embedder(timestep, dtype=x.dtype) # [B, C]
|
844 |
+
t0 = self.t_block(t) # [B, C]
|
845 |
+
if self.y_embedder is not None and y is not None:
|
846 |
+
y = self.y_embedder(y, self.training) # [B, 1, N_token, C]
|
847 |
+
|
848 |
+
if mask is not None:
|
849 |
+
if mask.shape[0] != y.shape[0]:
|
850 |
+
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
|
851 |
+
mask = mask.squeeze(1).squeeze(1)
|
852 |
+
y = (
|
853 |
+
y.squeeze(1)
|
854 |
+
.masked_select(mask.unsqueeze(-1) != 0)
|
855 |
+
.view(1, -1, x.shape[-1])
|
856 |
+
)
|
857 |
+
y_lens = mask.sum(dim=1).tolist()
|
858 |
+
else:
|
859 |
+
y_lens = [y.shape[2]] * y.shape[0] # N_token * B
|
860 |
+
y = y.squeeze(1).view(1, -1, x.shape[-1])
|
861 |
+
else:
|
862 |
+
y = None
|
863 |
+
y_lens = None
|
864 |
+
|
865 |
+
# blocks
|
866 |
+
for i, block in enumerate(self.blocks):
|
867 |
+
if i == 0:
|
868 |
+
tpe = self.pos_embed_temporal
|
869 |
+
else:
|
870 |
+
tpe = None
|
871 |
+
x = block(x=x, t=t0, y=y, mask=y_lens, tpe=tpe)
|
872 |
+
# x.shape: [B, N, C]
|
873 |
+
|
874 |
+
# final process
|
875 |
+
x = self.final_layer(x, t) # [B, N, C=T_p * H_p * W_p * C_out]
|
876 |
+
x = self.unpatchify(x) # [B, C_out, T, H, W]
|
877 |
+
|
878 |
+
return x
|
879 |
+
|
880 |
+
def unpatchify(self, x):
|
881 |
+
"""
|
882 |
+
Args:
|
883 |
+
x (torch.Tensor): of shape [B, N, C]
|
884 |
+
|
885 |
+
Return:
|
886 |
+
x (torch.Tensor): of shape [B, C_out, T, H, W]
|
887 |
+
"""
|
888 |
+
|
889 |
+
N_t, N_h, N_w = [self.input_size[i] // self.patch_size[i] for i in range(3)]
|
890 |
+
T_p, H_p, W_p = self.patch_size
|
891 |
+
x = rearrange(
|
892 |
+
x,
|
893 |
+
"B (N_t N_h N_w) (T_p H_p W_p C_out) -> B C_out (N_t T_p) (N_h H_p) (N_w W_p)",
|
894 |
+
N_t=N_t,
|
895 |
+
N_h=N_h,
|
896 |
+
N_w=N_w,
|
897 |
+
T_p=T_p,
|
898 |
+
H_p=H_p,
|
899 |
+
W_p=W_p,
|
900 |
+
C_out=self.out_channels,
|
901 |
+
)
|
902 |
+
return x
|
903 |
+
|
904 |
+
def unpatchify_old(self, x):
|
905 |
+
c = self.out_channels
|
906 |
+
t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)]
|
907 |
+
pt, ph, pw = self.patch_size
|
908 |
+
|
909 |
+
x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c))
|
910 |
+
x = rearrange(x, "n t h w r p q c -> n c t r h p w q")
|
911 |
+
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
|
912 |
+
return imgs
|
913 |
+
|
914 |
+
def get_spatial_pos_embed(self, grid_size=None):
|
915 |
+
if grid_size is None:
|
916 |
+
grid_size = self.input_size[1:]
|
917 |
+
pos_embed = get_2d_sincos_pos_embed(
|
918 |
+
self.hidden_size,
|
919 |
+
(grid_size[0] // self.patch_size[1], grid_size[1] // self.patch_size[2]),
|
920 |
+
scale=self.space_scale,
|
921 |
+
)
|
922 |
+
pos_embed = (
|
923 |
+
torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False)
|
924 |
+
)
|
925 |
+
return pos_embed
|
926 |
+
|
927 |
+
def get_temporal_pos_embed(self):
|
928 |
+
pos_embed = get_1d_sincos_pos_embed(
|
929 |
+
self.hidden_size,
|
930 |
+
self.input_size[0] // self.patch_size[0],
|
931 |
+
scale=self.time_scale,
|
932 |
+
)
|
933 |
+
pos_embed = (
|
934 |
+
torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False)
|
935 |
+
)
|
936 |
+
return pos_embed
|
937 |
+
|
938 |
+
def freeze_not_temporal(self):
|
939 |
+
for n, p in self.named_parameters():
|
940 |
+
if "attn_temp" not in n:
|
941 |
+
p.requires_grad = False
|
942 |
+
|
943 |
+
def freeze_text(self):
|
944 |
+
for n, p in self.named_parameters():
|
945 |
+
if "cross_attn" in n:
|
946 |
+
p.requires_grad = False
|
947 |
+
|
948 |
+
def initialize_temporal(self):
|
949 |
+
for block in self.blocks:
|
950 |
+
nn.init.constant_(block.attn_temp.proj.weight, 0)
|
951 |
+
nn.init.constant_(block.attn_temp.proj.bias, 0)
|
952 |
+
|
953 |
+
def initialize_weights(self):
|
954 |
+
# Initialize transformer layers:
|
955 |
+
def _basic_init(module):
|
956 |
+
if isinstance(module, nn.Linear):
|
957 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
958 |
+
if module.bias is not None:
|
959 |
+
nn.init.constant_(module.bias, 0)
|
960 |
+
|
961 |
+
self.apply(_basic_init)
|
962 |
+
|
963 |
+
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
|
964 |
+
w = self.x_embedder.proj.weight.data
|
965 |
+
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
966 |
+
|
967 |
+
# Initialize timestep embedding MLP:
|
968 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
969 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
970 |
+
nn.init.normal_(self.t_block[1].weight, std=0.02)
|
971 |
+
|
972 |
+
# Initialize caption embedding MLP:
|
973 |
+
if self.y_embedder is not None:
|
974 |
+
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02)
|
975 |
+
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02)
|
976 |
+
|
977 |
+
# Zero-out adaLN modulation layers in PixArt blocks:
|
978 |
+
for block in self.blocks:
|
979 |
+
nn.init.constant_(block.cross_attn.proj.weight, 0)
|
980 |
+
nn.init.constant_(block.cross_attn.proj.bias, 0)
|
981 |
+
|
982 |
+
# Zero-out output layers:
|
983 |
+
nn.init.constant_(self.final_layer.linear.weight, 0)
|
984 |
+
nn.init.constant_(self.final_layer.linear.bias, 0)
|
985 |
+
|
986 |
+
|
987 |
+
@dataclass
|
988 |
+
class DiffuserSTDiTModelOutput(BaseOutput):
|
989 |
+
"""
|
990 |
+
The output of [`DiffuserSTDiT`].
|
991 |
+
|
992 |
+
Args:
|
993 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, num_frames, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
994 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
995 |
+
distributions for the unnoised latent pixels.
|
996 |
+
"""
|
997 |
+
|
998 |
+
sample: torch.FloatTensor
|
999 |
+
|
1000 |
+
|
1001 |
+
class DiffuserSTDiT(ModelMixin, ConfigMixin):
|
1002 |
+
"""
|
1003 |
+
STDiT: Spatio-Temporal Diffusion Transformer.
|
1004 |
+
|
1005 |
+
Parameters:
|
1006 |
+
input_size (tuple): Input size of the video. Default: (1, 32, 32).
|
1007 |
+
in_channels (int): Number of input video channels. Default: 4.
|
1008 |
+
out_channels (int): Number of output video channels. Default: 4.
|
1009 |
+
patch_size (tuple): Patch token size. Default: (1, 2, 2).
|
1010 |
+
hidden_size (int): Hidden size of the model. Default: 1152.
|
1011 |
+
depth (int): Number of layers. Default: 28.
|
1012 |
+
num_heads (int): Number of attention heads. Default: 16.
|
1013 |
+
mlp_ratio (float): Ratio of hidden to mlp hidden size. Default: 4.0.
|
1014 |
+
class_dropout_prob (float): Probability of dropping class tokens. Default: 0.1.
|
1015 |
+
drop_path (float): Drop path rate. Default: 0.0.
|
1016 |
+
no_temporal_pos_emb (bool): Disable temporal positional embeddings. Default: False.
|
1017 |
+
caption_channels (int): Number of caption channels. Default: 4096.
|
1018 |
+
model_max_length (int): Maximum length of the model. Default: 120.
|
1019 |
+
space_scale (float): Spatial scale. Default: 1.0.
|
1020 |
+
time_scale (float): Temporal scale. Default: 1.0.
|
1021 |
+
enable_flashattn (bool): Enable FlashAttention. Default: False.
|
1022 |
+
"""
|
1023 |
+
|
1024 |
+
@register_to_config
|
1025 |
+
def __init__(
|
1026 |
+
self,
|
1027 |
+
input_size=(1, 32, 32), # T, H, W
|
1028 |
+
in_channels=4,
|
1029 |
+
out_channels=4,
|
1030 |
+
patch_size=(1, 2, 2), # T, H, W
|
1031 |
+
hidden_size=1152, #
|
1032 |
+
depth=28, # Number of layers
|
1033 |
+
num_heads=16,
|
1034 |
+
mlp_ratio=4.0,
|
1035 |
+
class_dropout_prob=0.1,
|
1036 |
+
drop_path=0.0,
|
1037 |
+
no_temporal_pos_emb=False,
|
1038 |
+
caption_channels=4096, # 0 to disable
|
1039 |
+
model_max_length=120,
|
1040 |
+
space_scale=1.0,
|
1041 |
+
time_scale=1.0,
|
1042 |
+
enable_flashattn=False,
|
1043 |
+
):
|
1044 |
+
|
1045 |
+
super().__init__()
|
1046 |
+
|
1047 |
+
self.model = STDiT(
|
1048 |
+
input_size=input_size,
|
1049 |
+
in_channels=in_channels,
|
1050 |
+
out_channels=out_channels,
|
1051 |
+
patch_size=patch_size,
|
1052 |
+
hidden_size=hidden_size,
|
1053 |
+
depth=depth,
|
1054 |
+
num_heads=num_heads,
|
1055 |
+
mlp_ratio=mlp_ratio,
|
1056 |
+
class_dropout_prob=class_dropout_prob,
|
1057 |
+
drop_path=drop_path,
|
1058 |
+
no_temporal_pos_emb=no_temporal_pos_emb,
|
1059 |
+
caption_channels=caption_channels,
|
1060 |
+
model_max_length=model_max_length,
|
1061 |
+
space_scale=space_scale,
|
1062 |
+
time_scale=time_scale,
|
1063 |
+
enable_flashattn=enable_flashattn,
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
def forward(
|
1067 |
+
self,
|
1068 |
+
x,
|
1069 |
+
timestep,
|
1070 |
+
encoder_hidden_states=None,
|
1071 |
+
cond_image=None,
|
1072 |
+
mask=None,
|
1073 |
+
return_dict=True,
|
1074 |
+
*args,
|
1075 |
+
**kwargs,
|
1076 |
+
):
|
1077 |
+
"""
|
1078 |
+
Args:
|
1079 |
+
x (torch.Tensor): latent representation of video; of shape [B, C, T, H, W]
|
1080 |
+
timestep (torch.Tensor): diffusion time steps; of shape [B]
|
1081 |
+
y (torch.Tensor): representation of prompts; of shape [B, 1, N_token, C]
|
1082 |
+
mask (torch.Tensor): mask for selecting prompt tokens; of shape [B, N_token]
|
1083 |
+
return_dict (bool): return a dictionary or not. Default: True.
|
1084 |
+
"""
|
1085 |
+
if type(timestep) == int or timestep.ndim == 0:
|
1086 |
+
timestep = torch.ones(x.shape[0], device=x.device) * timestep
|
1087 |
+
|
1088 |
+
encoder_hidden_states = (
|
1089 |
+
encoder_hidden_states.unsqueeze(1)
|
1090 |
+
if encoder_hidden_states is not None
|
1091 |
+
else None
|
1092 |
+
)
|
1093 |
+
|
1094 |
+
if cond_image is not None:
|
1095 |
+
assert (
|
1096 |
+
x.shape == cond_image.shape
|
1097 |
+
), "x and cond_image must have the same shape"
|
1098 |
+
x = torch.cat([x, cond_image], dim=1) # B x 2C x T x H x W
|
1099 |
+
|
1100 |
+
output = self.model(x, timestep, encoder_hidden_states, mask)
|
1101 |
+
if not return_dict:
|
1102 |
+
return (output,)
|
1103 |
+
|
1104 |
+
return DiffuserSTDiTModelOutput(sample=output)
|
1105 |
+
|
1106 |
+
|
1107 |
+
##############################
|
1108 |
+
# Image-Conditionned ST UNet #
|
1109 |
+
##############################
|
1110 |
+
|
1111 |
+
|
1112 |
+
@torch._dynamo.disable
|
1113 |
+
@dataclass
|
1114 |
+
class UNetSTICOutput(BaseOutput): # UNet-SpatioTemporal-ImageConditionned
|
1115 |
+
"""
|
1116 |
+
The output of [`UNetSpatioTemporalConditionModel`].
|
1117 |
+
|
1118 |
+
Args:
|
1119 |
+
sample (`torch.Tensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
|
1120 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
1121 |
+
"""
|
1122 |
+
|
1123 |
+
sample: torch.Tensor = None
|
1124 |
+
|
1125 |
+
|
1126 |
+
class UNetSTIC(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
1127 |
+
r"""
|
1128 |
+
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and
|
1129 |
+
returns a sample shaped output.
|
1130 |
+
|
1131 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
1132 |
+
for all models (such as downloading or saving).
|
1133 |
+
|
1134 |
+
Parameters:
|
1135 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
1136 |
+
Height and width of input/output sample.
|
1137 |
+
in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample.
|
1138 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
1139 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`):
|
1140 |
+
The tuple of downsample blocks to use.
|
1141 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`):
|
1142 |
+
The tuple of upsample blocks to use.
|
1143 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
1144 |
+
The tuple of output channels for each block.
|
1145 |
+
addition_time_embed_dim: (`int`, defaults to 256):
|
1146 |
+
Dimension to to encode the additional time ids.
|
1147 |
+
projection_class_embeddings_input_dim (`int`, defaults to 768):
|
1148 |
+
The dimension of the projection of encoded `added_time_ids`.
|
1149 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
1150 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
1151 |
+
The dimension of the cross attention features.
|
1152 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
1153 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
1154 |
+
[`~models.unets.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`],
|
1155 |
+
[`~models.unets.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`],
|
1156 |
+
[`~models.unets.unet_3d_blocks.UNetMidBlockSpatioTemporal`].
|
1157 |
+
num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`):
|
1158 |
+
The number of attention heads.
|
1159 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
1160 |
+
"""
|
1161 |
+
|
1162 |
+
_supports_gradient_checkpointing = True
|
1163 |
+
|
1164 |
+
@register_to_config
|
1165 |
+
def __init__(
|
1166 |
+
self,
|
1167 |
+
sample_size: Optional[int] = None,
|
1168 |
+
in_channels: int = 8,
|
1169 |
+
out_channels: int = 4,
|
1170 |
+
down_block_types: Tuple[str] = (
|
1171 |
+
"CrossAttnDownBlockSpatioTemporal",
|
1172 |
+
"CrossAttnDownBlockSpatioTemporal",
|
1173 |
+
"CrossAttnDownBlockSpatioTemporal",
|
1174 |
+
"DownBlockSpatioTemporal",
|
1175 |
+
),
|
1176 |
+
up_block_types: Tuple[str] = (
|
1177 |
+
"UpBlockSpatioTemporal",
|
1178 |
+
"CrossAttnUpBlockSpatioTemporal",
|
1179 |
+
"CrossAttnUpBlockSpatioTemporal",
|
1180 |
+
"CrossAttnUpBlockSpatioTemporal",
|
1181 |
+
),
|
1182 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
1183 |
+
addition_time_embed_dim: int = 256,
|
1184 |
+
projection_class_embeddings_input_dim: int = 768,
|
1185 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
1186 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1024,
|
1187 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
1188 |
+
num_attention_heads: Union[int, Tuple[int]] = (5, 10, 20, 20),
|
1189 |
+
num_frames: int = 25,
|
1190 |
+
):
|
1191 |
+
super().__init__()
|
1192 |
+
|
1193 |
+
self.sample_size = sample_size
|
1194 |
+
|
1195 |
+
# Check inputs
|
1196 |
+
if len(down_block_types) != len(up_block_types):
|
1197 |
+
raise ValueError(
|
1198 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
1199 |
+
)
|
1200 |
+
|
1201 |
+
if len(block_out_channels) != len(down_block_types):
|
1202 |
+
raise ValueError(
|
1203 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(
|
1207 |
+
down_block_types
|
1208 |
+
):
|
1209 |
+
raise ValueError(
|
1210 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
1211 |
+
)
|
1212 |
+
|
1213 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(
|
1214 |
+
down_block_types
|
1215 |
+
):
|
1216 |
+
raise ValueError(
|
1217 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
1218 |
+
)
|
1219 |
+
|
1220 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(
|
1221 |
+
down_block_types
|
1222 |
+
):
|
1223 |
+
raise ValueError(
|
1224 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
1225 |
+
)
|
1226 |
+
|
1227 |
+
# input
|
1228 |
+
self.conv_in = nn.Conv2d(
|
1229 |
+
in_channels,
|
1230 |
+
block_out_channels[0],
|
1231 |
+
kernel_size=3,
|
1232 |
+
padding=1,
|
1233 |
+
)
|
1234 |
+
|
1235 |
+
# time
|
1236 |
+
time_embed_dim = block_out_channels[0] * 4
|
1237 |
+
|
1238 |
+
self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0)
|
1239 |
+
timestep_input_dim = block_out_channels[0]
|
1240 |
+
|
1241 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
1242 |
+
|
1243 |
+
# self.add_time_proj = Timesteps(
|
1244 |
+
# addition_time_embed_dim, True, downscale_freq_shift=0
|
1245 |
+
# )
|
1246 |
+
# self.add_embedding = TimestepEmbedding(
|
1247 |
+
# projection_class_embeddings_input_dim, time_embed_dim
|
1248 |
+
# )
|
1249 |
+
|
1250 |
+
self.down_blocks = nn.ModuleList([])
|
1251 |
+
self.up_blocks = nn.ModuleList([])
|
1252 |
+
|
1253 |
+
if isinstance(num_attention_heads, int):
|
1254 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
1255 |
+
|
1256 |
+
if isinstance(cross_attention_dim, int):
|
1257 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
1258 |
+
|
1259 |
+
if isinstance(layers_per_block, int):
|
1260 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
1261 |
+
|
1262 |
+
if isinstance(transformer_layers_per_block, int):
|
1263 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(
|
1264 |
+
down_block_types
|
1265 |
+
)
|
1266 |
+
|
1267 |
+
blocks_time_embed_dim = time_embed_dim
|
1268 |
+
|
1269 |
+
# down
|
1270 |
+
output_channel = block_out_channels[0]
|
1271 |
+
for i, down_block_type in enumerate(down_block_types):
|
1272 |
+
input_channel = output_channel
|
1273 |
+
output_channel = block_out_channels[i]
|
1274 |
+
is_final_block = i == len(block_out_channels) - 1
|
1275 |
+
|
1276 |
+
down_block = get_down_block_3d(
|
1277 |
+
down_block_type,
|
1278 |
+
num_layers=layers_per_block[i],
|
1279 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
1280 |
+
in_channels=input_channel,
|
1281 |
+
out_channels=output_channel,
|
1282 |
+
temb_channels=blocks_time_embed_dim,
|
1283 |
+
add_downsample=not is_final_block,
|
1284 |
+
resnet_eps=1e-5,
|
1285 |
+
cross_attention_dim=cross_attention_dim[i],
|
1286 |
+
num_attention_heads=num_attention_heads[i],
|
1287 |
+
resnet_act_fn="silu",
|
1288 |
+
)
|
1289 |
+
self.down_blocks.append(down_block)
|
1290 |
+
|
1291 |
+
# mid
|
1292 |
+
self.mid_block = UNetMidBlockSpatioTemporal(
|
1293 |
+
block_out_channels[-1],
|
1294 |
+
temb_channels=blocks_time_embed_dim,
|
1295 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
1296 |
+
cross_attention_dim=cross_attention_dim[-1],
|
1297 |
+
num_attention_heads=num_attention_heads[-1],
|
1298 |
+
)
|
1299 |
+
|
1300 |
+
# count how many layers upsample the images
|
1301 |
+
self.num_upsamplers = 0
|
1302 |
+
|
1303 |
+
# up
|
1304 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
1305 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
1306 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
1307 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
1308 |
+
reversed_transformer_layers_per_block = list(
|
1309 |
+
reversed(transformer_layers_per_block)
|
1310 |
+
)
|
1311 |
+
|
1312 |
+
output_channel = reversed_block_out_channels[0]
|
1313 |
+
for i, up_block_type in enumerate(up_block_types):
|
1314 |
+
is_final_block = i == len(block_out_channels) - 1
|
1315 |
+
|
1316 |
+
prev_output_channel = output_channel
|
1317 |
+
output_channel = reversed_block_out_channels[i]
|
1318 |
+
input_channel = reversed_block_out_channels[
|
1319 |
+
min(i + 1, len(block_out_channels) - 1)
|
1320 |
+
]
|
1321 |
+
|
1322 |
+
# add upsample block for all BUT final layer
|
1323 |
+
if not is_final_block:
|
1324 |
+
add_upsample = True
|
1325 |
+
self.num_upsamplers += 1
|
1326 |
+
else:
|
1327 |
+
add_upsample = False
|
1328 |
+
|
1329 |
+
up_block = get_up_block_3d(
|
1330 |
+
up_block_type,
|
1331 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
1332 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
1333 |
+
in_channels=input_channel,
|
1334 |
+
out_channels=output_channel,
|
1335 |
+
prev_output_channel=prev_output_channel,
|
1336 |
+
temb_channels=blocks_time_embed_dim,
|
1337 |
+
add_upsample=add_upsample,
|
1338 |
+
resnet_eps=1e-5,
|
1339 |
+
resolution_idx=i,
|
1340 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
1341 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
1342 |
+
resnet_act_fn="silu",
|
1343 |
+
)
|
1344 |
+
self.up_blocks.append(up_block)
|
1345 |
+
prev_output_channel = output_channel
|
1346 |
+
|
1347 |
+
# out
|
1348 |
+
self.conv_norm_out = nn.GroupNorm(
|
1349 |
+
num_channels=block_out_channels[0], num_groups=32, eps=1e-5
|
1350 |
+
)
|
1351 |
+
self.conv_act = nn.SiLU()
|
1352 |
+
|
1353 |
+
self.conv_out = nn.Conv2d(
|
1354 |
+
block_out_channels[0],
|
1355 |
+
out_channels,
|
1356 |
+
kernel_size=3,
|
1357 |
+
padding=1,
|
1358 |
+
)
|
1359 |
+
|
1360 |
+
# self.set_default_attn_processor()
|
1361 |
+
|
1362 |
+
@property
|
1363 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
1364 |
+
r"""
|
1365 |
+
Returns:
|
1366 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
1367 |
+
indexed by its weight name.
|
1368 |
+
"""
|
1369 |
+
# set recursively
|
1370 |
+
processors = {}
|
1371 |
+
|
1372 |
+
def fn_recursive_add_processors(
|
1373 |
+
name: str,
|
1374 |
+
module: torch.nn.Module,
|
1375 |
+
processors: Dict[str, AttentionProcessor],
|
1376 |
+
):
|
1377 |
+
if hasattr(module, "get_processor"):
|
1378 |
+
processors[f"{name}.processor"] = module.get_processor()
|
1379 |
+
|
1380 |
+
for sub_name, child in module.named_children():
|
1381 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
1382 |
+
|
1383 |
+
return processors
|
1384 |
+
|
1385 |
+
for name, module in self.named_children():
|
1386 |
+
fn_recursive_add_processors(name, module, processors)
|
1387 |
+
|
1388 |
+
return processors
|
1389 |
+
|
1390 |
+
def set_attn_processor(self, processor):
|
1391 |
+
r"""
|
1392 |
+
Sets the attention processor to use to compute attention.
|
1393 |
+
|
1394 |
+
Parameters:
|
1395 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
1396 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
1397 |
+
for **all** `Attention` layers.
|
1398 |
+
|
1399 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
1400 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
1401 |
+
|
1402 |
+
"""
|
1403 |
+
count = len(self.attn_processors.keys())
|
1404 |
+
|
1405 |
+
if isinstance(processor, dict) and len(processor) != count:
|
1406 |
+
raise ValueError(
|
1407 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
1408 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
1409 |
+
)
|
1410 |
+
|
1411 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
1412 |
+
if hasattr(module, "set_processor"):
|
1413 |
+
if not isinstance(processor, dict):
|
1414 |
+
module.set_processor(processor)
|
1415 |
+
else:
|
1416 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
1417 |
+
|
1418 |
+
for sub_name, child in module.named_children():
|
1419 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
1420 |
+
|
1421 |
+
for name, module in self.named_children():
|
1422 |
+
fn_recursive_attn_processor(name, module, processor)
|
1423 |
+
|
1424 |
+
def set_default_attn_processor(self):
|
1425 |
+
"""
|
1426 |
+
Disables custom attention processors and sets the default attention implementation.
|
1427 |
+
"""
|
1428 |
+
if all(
|
1429 |
+
proc.__class__ in CROSS_ATTENTION_PROCESSORS
|
1430 |
+
for proc in self.attn_processors.values()
|
1431 |
+
):
|
1432 |
+
processor = AttnProcessor()
|
1433 |
+
else:
|
1434 |
+
raise ValueError(
|
1435 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
1436 |
+
)
|
1437 |
+
|
1438 |
+
self.set_attn_processor(processor)
|
1439 |
+
|
1440 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
1441 |
+
if hasattr(module, "gradient_checkpointing"):
|
1442 |
+
module.gradient_checkpointing = value
|
1443 |
+
|
1444 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
1445 |
+
def enable_forward_chunking(
|
1446 |
+
self, chunk_size: Optional[int] = None, dim: int = 0
|
1447 |
+
) -> None:
|
1448 |
+
"""
|
1449 |
+
Sets the attention processor to use [feed forward
|
1450 |
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
1451 |
+
|
1452 |
+
Parameters:
|
1453 |
+
chunk_size (`int`, *optional*):
|
1454 |
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
1455 |
+
over each tensor of dim=`dim`.
|
1456 |
+
dim (`int`, *optional*, defaults to `0`):
|
1457 |
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
1458 |
+
or dim=1 (sequence length).
|
1459 |
+
"""
|
1460 |
+
if dim not in [0, 1]:
|
1461 |
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
1462 |
+
|
1463 |
+
# By default chunk size is 1
|
1464 |
+
chunk_size = chunk_size or 1
|
1465 |
+
|
1466 |
+
def fn_recursive_feed_forward(
|
1467 |
+
module: torch.nn.Module, chunk_size: int, dim: int
|
1468 |
+
):
|
1469 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
1470 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
1471 |
+
|
1472 |
+
for child in module.children():
|
1473 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
1474 |
+
|
1475 |
+
for module in self.children():
|
1476 |
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
1477 |
+
|
1478 |
+
def forward(
|
1479 |
+
self,
|
1480 |
+
x: torch.Tensor,
|
1481 |
+
timestep: Union[torch.Tensor, float, int],
|
1482 |
+
encoder_hidden_states: torch.Tensor,
|
1483 |
+
cond_image=None,
|
1484 |
+
mask=None,
|
1485 |
+
# added_time_ids: torch.Tensor,
|
1486 |
+
return_dict: bool = True,
|
1487 |
+
) -> Union[UNetSTICOutput, Tuple]:
|
1488 |
+
r"""
|
1489 |
+
The [`UNetSpatioTemporalConditionModel`] forward method.
|
1490 |
+
|
1491 |
+
Args:
|
1492 |
+
sample (`torch.Tensor`):
|
1493 |
+
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
|
1494 |
+
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
|
1495 |
+
encoder_hidden_states (`torch.Tensor`):
|
1496 |
+
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`.
|
1497 |
+
added_time_ids: (`torch.Tensor`):
|
1498 |
+
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
|
1499 |
+
embeddings and added to the time embeddings.
|
1500 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1501 |
+
Whether or not to return a [`~models.unet_slatio_temporal.UNetSTICOutput`] instead
|
1502 |
+
of a plain tuple.
|
1503 |
+
Returns:
|
1504 |
+
[`~models.unet_slatio_temporal.UNetSTICOutput`] or `tuple`:
|
1505 |
+
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSTICOutput`] is
|
1506 |
+
returned, otherwise a `tuple` is returned where the first element is the sample tensor.
|
1507 |
+
"""
|
1508 |
+
|
1509 |
+
sample = torch.cat([x, cond_image], dim=1) # B C+1 T H W
|
1510 |
+
|
1511 |
+
# pad to multiple of 2**n
|
1512 |
+
res_target = 2 ** (np.ceil(np.log2(sample.shape[-1])).astype(int))
|
1513 |
+
padding = (res_target - sample.shape[-1]) // 2
|
1514 |
+
sample = F.pad(
|
1515 |
+
sample, (padding, padding, padding, padding, 0, 0), mode="circular"
|
1516 |
+
)
|
1517 |
+
|
1518 |
+
# reshape from B C T H W to B T C H W
|
1519 |
+
sample = sample.permute(0, 2, 1, 3, 4)
|
1520 |
+
|
1521 |
+
# 1. time
|
1522 |
+
timesteps = timestep
|
1523 |
+
if not torch.is_tensor(timesteps):
|
1524 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
1525 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
1526 |
+
is_mps = sample.device.type == "mps"
|
1527 |
+
if isinstance(timestep, float):
|
1528 |
+
dtype = torch.float32 if is_mps else torch.float64
|
1529 |
+
else:
|
1530 |
+
dtype = torch.int32 if is_mps else torch.int64
|
1531 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
1532 |
+
elif len(timesteps.shape) == 0:
|
1533 |
+
timesteps = timesteps[None].to(sample.device)
|
1534 |
+
|
1535 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1536 |
+
batch_size, num_frames = sample.shape[:2]
|
1537 |
+
timesteps = timesteps.expand(batch_size)
|
1538 |
+
|
1539 |
+
t_emb = self.time_proj(timesteps)
|
1540 |
+
|
1541 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1542 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
1543 |
+
# there might be better ways to encapsulate this.
|
1544 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
1545 |
+
|
1546 |
+
emb = self.time_embedding(t_emb)
|
1547 |
+
|
1548 |
+
# time_embeds = self.add_time_proj(added_time_ids.flatten())
|
1549 |
+
# time_embeds = time_embeds.reshape((batch_size, -1))
|
1550 |
+
# time_embeds = time_embeds.to(emb.dtype)
|
1551 |
+
# aug_emb = self.add_embedding(time_embeds)
|
1552 |
+
# emb = emb + aug_emb
|
1553 |
+
|
1554 |
+
# Flatten the batch and frames dimensions
|
1555 |
+
# sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width]
|
1556 |
+
sample = sample.flatten(0, 1)
|
1557 |
+
# Repeat the embeddings num_video_frames times
|
1558 |
+
# emb: [batch, channels] -> [batch * frames, channels]
|
1559 |
+
emb = emb.repeat_interleave(num_frames, dim=0)
|
1560 |
+
# encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels]
|
1561 |
+
encoder_hidden_states = encoder_hidden_states.repeat_interleave(
|
1562 |
+
num_frames, dim=0
|
1563 |
+
)
|
1564 |
+
|
1565 |
+
# 2. pre-process
|
1566 |
+
sample = self.conv_in(sample)
|
1567 |
+
|
1568 |
+
image_only_indicator = torch.zeros(
|
1569 |
+
batch_size, num_frames, dtype=sample.dtype, device=sample.device
|
1570 |
+
)
|
1571 |
+
|
1572 |
+
down_block_res_samples = (sample,)
|
1573 |
+
for downsample_block in self.down_blocks:
|
1574 |
+
if (
|
1575 |
+
hasattr(downsample_block, "has_cross_attention")
|
1576 |
+
and downsample_block.has_cross_attention
|
1577 |
+
):
|
1578 |
+
sample, res_samples = downsample_block(
|
1579 |
+
hidden_states=sample,
|
1580 |
+
temb=emb,
|
1581 |
+
encoder_hidden_states=encoder_hidden_states,
|
1582 |
+
image_only_indicator=image_only_indicator,
|
1583 |
+
)
|
1584 |
+
else:
|
1585 |
+
sample, res_samples = downsample_block(
|
1586 |
+
hidden_states=sample,
|
1587 |
+
temb=emb,
|
1588 |
+
image_only_indicator=image_only_indicator,
|
1589 |
+
)
|
1590 |
+
|
1591 |
+
down_block_res_samples += res_samples
|
1592 |
+
|
1593 |
+
# 4. mid
|
1594 |
+
sample = self.mid_block(
|
1595 |
+
hidden_states=sample,
|
1596 |
+
temb=emb,
|
1597 |
+
encoder_hidden_states=encoder_hidden_states,
|
1598 |
+
image_only_indicator=image_only_indicator,
|
1599 |
+
)
|
1600 |
+
|
1601 |
+
# 5. up
|
1602 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1603 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1604 |
+
down_block_res_samples = down_block_res_samples[
|
1605 |
+
: -len(upsample_block.resnets)
|
1606 |
+
]
|
1607 |
+
|
1608 |
+
if (
|
1609 |
+
hasattr(upsample_block, "has_cross_attention")
|
1610 |
+
and upsample_block.has_cross_attention
|
1611 |
+
):
|
1612 |
+
sample = upsample_block(
|
1613 |
+
hidden_states=sample,
|
1614 |
+
temb=emb,
|
1615 |
+
res_hidden_states_tuple=res_samples,
|
1616 |
+
encoder_hidden_states=encoder_hidden_states,
|
1617 |
+
image_only_indicator=image_only_indicator,
|
1618 |
+
)
|
1619 |
+
else:
|
1620 |
+
sample = upsample_block(
|
1621 |
+
hidden_states=sample,
|
1622 |
+
temb=emb,
|
1623 |
+
res_hidden_states_tuple=res_samples,
|
1624 |
+
image_only_indicator=image_only_indicator,
|
1625 |
+
)
|
1626 |
+
|
1627 |
+
# 6. post-process
|
1628 |
+
sample = self.conv_norm_out(sample)
|
1629 |
+
sample = self.conv_act(sample)
|
1630 |
+
sample = self.conv_out(sample)
|
1631 |
+
|
1632 |
+
# 7. Reshape back to original shape
|
1633 |
+
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:])
|
1634 |
+
|
1635 |
+
if padding > 0:
|
1636 |
+
sample = sample[:, :, :, padding:-padding, padding:-padding]
|
1637 |
+
|
1638 |
+
# reshape back to B C T H W
|
1639 |
+
sample = sample.permute(0, 2, 1, 3, 4)
|
1640 |
+
|
1641 |
+
if not return_dict:
|
1642 |
+
return (sample,)
|
1643 |
+
|
1644 |
+
return UNetSTICOutput(sample=sample)
|
1645 |
+
|
1646 |
+
|
1647 |
+
class ContrastiveModel(nn.Module):
|
1648 |
+
def __init__(self, in_channels, out_channels, backbone=None, kl_loss_weight=0.0):
|
1649 |
+
super(ContrastiveModel, self).__init__()
|
1650 |
+
|
1651 |
+
assert backbone is not None, "Backbone must be provided."
|
1652 |
+
self.backbone = backbone
|
1653 |
+
|
1654 |
+
self.backbone = self.patch_backbone(self.backbone, in_channels, out_channels)
|
1655 |
+
|
1656 |
+
self.fc_end = nn.Linear(out_channels, 1)
|
1657 |
+
|
1658 |
+
self.kl_loss_weight = kl_loss_weight
|
1659 |
+
|
1660 |
+
@classmethod
|
1661 |
+
def patch_backbone(cls, backbone, in_channels, out_channels):
|
1662 |
+
if "ResNet" in backbone.__class__.__name__:
|
1663 |
+
backbone.model.conv1 = nn.Conv2d(
|
1664 |
+
in_channels,
|
1665 |
+
64,
|
1666 |
+
kernel_size=(7, 7),
|
1667 |
+
stride=(2, 2),
|
1668 |
+
padding=(3, 3),
|
1669 |
+
bias=False,
|
1670 |
+
)
|
1671 |
+
backbone.model.fc = nn.Linear(
|
1672 |
+
in_features=512, out_features=out_channels, bias=True
|
1673 |
+
)
|
1674 |
+
else:
|
1675 |
+
raise Exception(
|
1676 |
+
"Invalid argument: "
|
1677 |
+
+ backbone.__class__.__name__
|
1678 |
+
+ "\nChoose ResNet! Other architectures are not yet implemented in this framework."
|
1679 |
+
)
|
1680 |
+
|
1681 |
+
return backbone
|
1682 |
+
|
1683 |
+
def forward_once(self, x):
|
1684 |
+
features = self.backbone(x)
|
1685 |
+
output = torch.sigmoid(features)
|
1686 |
+
return output, features
|
1687 |
+
|
1688 |
+
def forward_constrastive(self, input1, input2):
|
1689 |
+
y1 = self.forward_once(input1)
|
1690 |
+
y2 = self.forward_once(input2)
|
1691 |
+
|
1692 |
+
difference = torch.abs(y1 - y2)
|
1693 |
+
output = self.fc_end(difference) # linear layer
|
1694 |
+
|
1695 |
+
return output # B x 1
|
1696 |
+
|
1697 |
+
def forward_fused(self, input1, input2):
|
1698 |
+
inputs = torch.cat((input1, input2), dim=0) # 2B x C x H x W
|
1699 |
+
outputs, features = self.forward_once(inputs)
|
1700 |
+
y1, y2 = torch.split(outputs, outputs.size(0) // 2, dim=0)
|
1701 |
+
difference = torch.abs(y1 - y2)
|
1702 |
+
output = self.fc_end(difference)
|
1703 |
+
|
1704 |
+
# Compute KL divergence
|
1705 |
+
if self.kl_loss_weight > 0:
|
1706 |
+
mu = torch.mean(features, dim=0)
|
1707 |
+
var = torch.var(features, dim=0) + 1e-6 # Add epsilon to avoid log(0)
|
1708 |
+
kl_loss = 0.5 * torch.sum(mu.pow(2) + var - torch.log(var) - 1)
|
1709 |
+
else:
|
1710 |
+
kl_loss = torch.zeros((1,), device=output.device)
|
1711 |
+
return output, kl_loss
|
1712 |
+
|
1713 |
+
def loss(self, output, target):
|
1714 |
+
return nn.functional.binary_cross_entropy_with_logits(output, target[:, None])
|
1715 |
+
|
1716 |
+
def forward(self, input1, input2, target):
|
1717 |
+
y_hat, kl_loss = self.forward_fused(input1, input2)
|
1718 |
+
loss = self.loss(y_hat, target)
|
1719 |
+
total_loss = loss + self.kl_loss_weight * kl_loss
|
1720 |
+
return total_loss, loss, kl_loss
|
1721 |
+
|
1722 |
+
|
1723 |
+
class ResNet18(ModelMixin, ConfigMixin):
|
1724 |
+
@register_to_config
|
1725 |
+
def __init__(self, weights=None, progress=False):
|
1726 |
+
super(ResNet18, self).__init__()
|
1727 |
+
self.model = resnet18(weights=weights, progress=progress)
|
1728 |
+
|
1729 |
+
def forward(self, x):
|
1730 |
+
return self.model(x)
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python==4.9.0.80
|
2 |
+
diffusers==0.30.3
|
3 |
+
einops==0.7.0
|
4 |
+
gradio==5.22.0
|
5 |
+
huggingface-hub==0.29.3
|
6 |
+
numpy==1.26.4
|
7 |
+
omegaconf==2.3.0
|
8 |
+
pillow==10.2.0
|
9 |
+
safetensors==0.4.5
|
10 |
+
torch==2.2.2
|
11 |
+
torchdiffeq==0.2.4
|
12 |
+
xformers==0.0.25.post1
|
13 |
+
timm==0.9.16
|
14 |
+
accelerate==0.34.2
|