Spaces:
Running
Running
Upload 7 files
Browse files- inference.py +61 -37
- layers.py +2 -2
- loss.py +39 -15
- models.py +56 -6
- smiles_cor.py +1291 -0
- utils.py +18 -7
inference.py
CHANGED
|
@@ -4,19 +4,20 @@ import pickle
|
|
| 4 |
import random
|
| 5 |
from tqdm import tqdm
|
| 6 |
import argparse
|
| 7 |
-
|
| 8 |
import torch
|
| 9 |
from torch_geometric.loader import DataLoader
|
| 10 |
import torch.utils.data
|
| 11 |
from rdkit import RDLogger
|
| 12 |
torch.set_num_threads(5)
|
| 13 |
RDLogger.DisableLog('rdApp.*')
|
| 14 |
-
|
| 15 |
from utils import *
|
| 16 |
from models import Generator
|
| 17 |
from new_dataloader import DruggenDataset
|
| 18 |
from loss import generator_loss
|
| 19 |
from training_data import load_molecules
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
class Inference(object):
|
|
@@ -43,6 +44,7 @@ class Inference(object):
|
|
| 43 |
|
| 44 |
self.inference_model = config.inference_model
|
| 45 |
self.sample_num = config.sample_num
|
|
|
|
| 46 |
|
| 47 |
# Data loader.
|
| 48 |
self.inf_raw_file = config.inf_raw_file # SMILES containing text file for first dataset.
|
|
@@ -103,8 +105,7 @@ class Inference(object):
|
|
| 103 |
dim=self.dim,
|
| 104 |
depth=self.depth,
|
| 105 |
heads=self.heads,
|
| 106 |
-
mlp_ratio=self.mlp_ratio
|
| 107 |
-
submodel = self.submodel)
|
| 108 |
|
| 109 |
self.print_network(self.G, 'G')
|
| 110 |
|
|
@@ -113,7 +114,7 @@ class Inference(object):
|
|
| 113 |
|
| 114 |
def decoder_load(self, dictionary_name):
|
| 115 |
''' Loading the atom and bond decoders'''
|
| 116 |
-
with open("data/decoders/" + dictionary_name + "_" + self.dataset_name + '.pkl', 'rb') as f:
|
| 117 |
return pickle.load(f)
|
| 118 |
|
| 119 |
|
|
@@ -139,18 +140,25 @@ class Inference(object):
|
|
| 139 |
self.restore_model(self.submodel, self.inference_model)
|
| 140 |
|
| 141 |
# smiles data for metrics calculation.
|
| 142 |
-
chembl_smiles = [line for line in open("data/chembl_train.smi", 'r').read().splitlines()]
|
| 143 |
-
chembl_test = [line for line in open("data/chembl_test.smi", 'r').read().splitlines()]
|
| 144 |
-
drug_smiles = [line for line in open("data/akt_inhibitors.smi", 'r').read().splitlines()]
|
| 145 |
drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles]
|
| 146 |
drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None]
|
| 147 |
|
| 148 |
|
| 149 |
# Make directories if not exist.
|
| 150 |
-
if not os.path.exists("experiments/inference/{}".format(self.submodel)):
|
| 151 |
-
os.makedirs("experiments/inference/{}".format(self.submodel))
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
self.G.eval()
|
| 155 |
|
| 156 |
start_time = time.time()
|
|
@@ -158,7 +166,9 @@ class Inference(object):
|
|
| 158 |
uniqueness_calc = []
|
| 159 |
real_smiles_snn = []
|
| 160 |
nodes_sample = torch.Tensor(size=[1,45,1]).to(self.device)
|
| 161 |
-
|
|
|
|
|
|
|
| 162 |
val_counter = 0
|
| 163 |
none_counter = 0
|
| 164 |
# Inference mode
|
|
@@ -182,7 +192,7 @@ class Inference(object):
|
|
| 182 |
g_edges_hat_sample = torch.max(edge_sample, -1)[1]
|
| 183 |
g_nodes_hat_sample = torch.max(node_sample, -1)[1]
|
| 184 |
|
| 185 |
-
fake_mol_g = [self.inf_dataset.matrices2mol_drugs(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=
|
| 186 |
for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]
|
| 187 |
|
| 188 |
a_tensor_sample = torch.max(a_tensor, -1)[1]
|
|
@@ -197,34 +207,47 @@ class Inference(object):
|
|
| 197 |
if molecules is None:
|
| 198 |
none_counter += 1
|
| 199 |
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
metric_calc_dr.append(molecules)
|
| 210 |
-
|
| 211 |
|
|
|
|
| 212 |
generation_number = len([x for x in metric_calc_dr if x is not None])
|
| 213 |
if generation_number == self.sample_num or none_counter == self.sample_num:
|
| 214 |
break
|
| 215 |
-
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
et = time.time() - start_time
|
| 218 |
-
gen_vecs = [AllChem.GetMorganFingerprintAsBitVect(Chem.MolFromSmiles(x), 2, nBits=1024) for x in uniqueness_calc if Chem.MolFromSmiles(x) is not None]
|
| 219 |
-
real_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in real_smiles_snn if x is not None]
|
| 220 |
-
print("Inference mode is lasted for {:.2f} seconds".format(et))
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
return{
|
| 226 |
"Runtime (seconds)": f"{et:.2f}",
|
| 227 |
-
"Validity":
|
| 228 |
"Uniqueness": f"{fraction_unique(uniqueness_calc):.2f}",
|
| 229 |
"Novelty (Train)": f"{novelty(metric_calc_dr, chembl_smiles):.2f}",
|
| 230 |
"Novelty (Inference)": f"{novelty(metric_calc_dr, chembl_test):.2f}",
|
|
@@ -237,13 +260,14 @@ if __name__=="__main__":
|
|
| 237 |
# Inference configuration.
|
| 238 |
parser.add_argument('--submodel', type=str, default="DrugGEN", help="Chose model subtype: DrugGEN, NoTarget", choices=['DrugGEN', 'NoTarget'])
|
| 239 |
parser.add_argument('--inference_model', type=str, help="Path to the model for inference")
|
| 240 |
-
parser.add_argument('--sample_num', type=int, default=
|
| 241 |
-
|
|
|
|
| 242 |
# Data configuration.
|
| 243 |
parser.add_argument('--inf_dataset_file', type=str, default='chembl45_test.pt')
|
| 244 |
-
parser.add_argument('--inf_raw_file', type=str, default='data/chembl_test.smi')
|
| 245 |
parser.add_argument('--inf_batch_size', type=int, default=1, help='Batch size for inference')
|
| 246 |
-
parser.add_argument('--mol_data_dir', type=str, default='data')
|
| 247 |
parser.add_argument('--features', type=str2bool, default=False, help='features dimension for nodes')
|
| 248 |
|
| 249 |
# Model configuration.
|
|
|
|
| 4 |
import random
|
| 5 |
from tqdm import tqdm
|
| 6 |
import argparse
|
| 7 |
+
import pandas as pd
|
| 8 |
import torch
|
| 9 |
from torch_geometric.loader import DataLoader
|
| 10 |
import torch.utils.data
|
| 11 |
from rdkit import RDLogger
|
| 12 |
torch.set_num_threads(5)
|
| 13 |
RDLogger.DisableLog('rdApp.*')
|
| 14 |
+
from rdkit.Chem import QED
|
| 15 |
from utils import *
|
| 16 |
from models import Generator
|
| 17 |
from new_dataloader import DruggenDataset
|
| 18 |
from loss import generator_loss
|
| 19 |
from training_data import load_molecules
|
| 20 |
+
from smiles_cor import smi_correct
|
| 21 |
|
| 22 |
|
| 23 |
class Inference(object):
|
|
|
|
| 44 |
|
| 45 |
self.inference_model = config.inference_model
|
| 46 |
self.sample_num = config.sample_num
|
| 47 |
+
self.correct = config.correct
|
| 48 |
|
| 49 |
# Data loader.
|
| 50 |
self.inf_raw_file = config.inf_raw_file # SMILES containing text file for first dataset.
|
|
|
|
| 105 |
dim=self.dim,
|
| 106 |
depth=self.depth,
|
| 107 |
heads=self.heads,
|
| 108 |
+
mlp_ratio=self.mlp_ratio)
|
|
|
|
| 109 |
|
| 110 |
self.print_network(self.G, 'G')
|
| 111 |
|
|
|
|
| 114 |
|
| 115 |
def decoder_load(self, dictionary_name):
|
| 116 |
''' Loading the atom and bond decoders'''
|
| 117 |
+
with open("DrugGEN/data/decoders/" + dictionary_name + "_" + self.dataset_name + '.pkl', 'rb') as f:
|
| 118 |
return pickle.load(f)
|
| 119 |
|
| 120 |
|
|
|
|
| 140 |
self.restore_model(self.submodel, self.inference_model)
|
| 141 |
|
| 142 |
# smiles data for metrics calculation.
|
| 143 |
+
chembl_smiles = [line for line in open("DrugGEN/data/chembl_train.smi", 'r').read().splitlines()]
|
| 144 |
+
chembl_test = [line for line in open("DrugGEN/data/chembl_test.smi", 'r').read().splitlines()]
|
| 145 |
+
drug_smiles = [line for line in open("DrugGEN/data/akt_inhibitors.smi", 'r').read().splitlines()]
|
| 146 |
drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles]
|
| 147 |
drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None]
|
| 148 |
|
| 149 |
|
| 150 |
# Make directories if not exist.
|
| 151 |
+
if not os.path.exists("DrugGEN/experiments/inference/{}".format(self.submodel)):
|
| 152 |
+
os.makedirs("DrugGEN/experiments/inference/{}".format(self.submodel))
|
| 153 |
+
if self.correct:
|
| 154 |
+
correct = smi_correct(self.submodel, "DrugGEN_/experiments/inference/{}".format(self.submodel))
|
| 155 |
+
search_res = pd.DataFrame(columns=["submodel", "validity",
|
| 156 |
+
"uniqueness", "novelty",
|
| 157 |
+
"novelty_test", "AKT_novelty",
|
| 158 |
+
"max_len", "mean_atom_type",
|
| 159 |
+
"snn_chembl", "snn_akt", "IntDiv", "qed"])
|
| 160 |
+
|
| 161 |
+
|
| 162 |
self.G.eval()
|
| 163 |
|
| 164 |
start_time = time.time()
|
|
|
|
| 166 |
uniqueness_calc = []
|
| 167 |
real_smiles_snn = []
|
| 168 |
nodes_sample = torch.Tensor(size=[1,45,1]).to(self.device)
|
| 169 |
+
f = open("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel), "w")
|
| 170 |
+
f.write("SMILES")
|
| 171 |
+
f.write("\n")
|
| 172 |
val_counter = 0
|
| 173 |
none_counter = 0
|
| 174 |
# Inference mode
|
|
|
|
| 192 |
g_edges_hat_sample = torch.max(edge_sample, -1)[1]
|
| 193 |
g_nodes_hat_sample = torch.max(node_sample, -1)[1]
|
| 194 |
|
| 195 |
+
fake_mol_g = [self.inf_dataset.matrices2mol_drugs(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=False, file_name=self.dataset_name)
|
| 196 |
for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]
|
| 197 |
|
| 198 |
a_tensor_sample = torch.max(a_tensor, -1)[1]
|
|
|
|
| 207 |
if molecules is None:
|
| 208 |
none_counter += 1
|
| 209 |
|
| 210 |
+
for molecules in inference_drugs:
|
| 211 |
+
if molecules is not None:
|
| 212 |
+
molecules = molecules.replace("*", "C")
|
| 213 |
+
f.write(molecules)
|
| 214 |
+
f.write("\n")
|
| 215 |
+
uniqueness_calc.append(molecules)
|
| 216 |
+
nodes_sample = torch.cat((nodes_sample, g_nodes_hat_sample.view(1,45,1)), 0)
|
| 217 |
+
pbar.update(1)
|
| 218 |
+
metric_calc_dr.append(molecules)
|
|
|
|
|
|
|
| 219 |
|
| 220 |
+
real_smiles_snn.append(real_mols[0])
|
| 221 |
generation_number = len([x for x in metric_calc_dr if x is not None])
|
| 222 |
if generation_number == self.sample_num or none_counter == self.sample_num:
|
| 223 |
break
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
f.close()
|
| 227 |
+
print("Inference completed, starting metrics calculation.")
|
| 228 |
+
if self.correct:
|
| 229 |
+
corrected = correct.correct("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel))
|
| 230 |
+
gen_smi = corrected["SMILES"].tolist()
|
| 231 |
+
|
| 232 |
+
else:
|
| 233 |
+
gen_smi = pd.read_csv("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel))["SMILES"].tolist()
|
| 234 |
+
|
| 235 |
+
|
| 236 |
et = time.time() - start_time
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
+
with open("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel), "w") as f:
|
| 239 |
+
for i in gen_smi:
|
| 240 |
+
f.write(i)
|
| 241 |
+
f.write("\n")
|
| 242 |
+
|
| 243 |
+
if self.correct:
|
| 244 |
+
val = round(len(gen_smi)/self.sample_num,3)
|
| 245 |
+
else:
|
| 246 |
+
val = round(fraction_valid(gen_smi),3)
|
| 247 |
|
| 248 |
return{
|
| 249 |
"Runtime (seconds)": f"{et:.2f}",
|
| 250 |
+
"Validity": str(val),
|
| 251 |
"Uniqueness": f"{fraction_unique(uniqueness_calc):.2f}",
|
| 252 |
"Novelty (Train)": f"{novelty(metric_calc_dr, chembl_smiles):.2f}",
|
| 253 |
"Novelty (Inference)": f"{novelty(metric_calc_dr, chembl_test):.2f}",
|
|
|
|
| 260 |
# Inference configuration.
|
| 261 |
parser.add_argument('--submodel', type=str, default="DrugGEN", help="Chose model subtype: DrugGEN, NoTarget", choices=['DrugGEN', 'NoTarget'])
|
| 262 |
parser.add_argument('--inference_model', type=str, help="Path to the model for inference")
|
| 263 |
+
parser.add_argument('--sample_num', type=int, default=100, help='inference samples')
|
| 264 |
+
parser.add_argument('--correct', type=str2bool, default=False, help='Correct smiles')
|
| 265 |
+
|
| 266 |
# Data configuration.
|
| 267 |
parser.add_argument('--inf_dataset_file', type=str, default='chembl45_test.pt')
|
| 268 |
+
parser.add_argument('--inf_raw_file', type=str, default='DrugGEN/data/chembl_test.smi')
|
| 269 |
parser.add_argument('--inf_batch_size', type=int, default=1, help='Batch size for inference')
|
| 270 |
+
parser.add_argument('--mol_data_dir', type=str, default='DrugGEN/data')
|
| 271 |
parser.add_argument('--features', type=str2bool, default=False, help='features dimension for nodes')
|
| 272 |
|
| 273 |
# Model configuration.
|
layers.py
CHANGED
|
@@ -82,7 +82,7 @@ class Encoder_Block(nn.Module):
|
|
| 82 |
|
| 83 |
def forward(self, x, y):
|
| 84 |
x1 = self.ln1(x)
|
| 85 |
-
x2,y1 = self.attn(x1,y)
|
| 86 |
x2 = x1 + x2
|
| 87 |
y2 = y1 + y
|
| 88 |
x2 = self.ln3(x2)
|
|
@@ -102,5 +102,5 @@ class TransformerEncoder(nn.Module):
|
|
| 102 |
|
| 103 |
def forward(self, x, y):
|
| 104 |
for Encoder_Block in self.Encoder_Blocks:
|
| 105 |
-
x, y = Encoder_Block(x,y)
|
| 106 |
return x, y
|
|
|
|
| 82 |
|
| 83 |
def forward(self, x, y):
|
| 84 |
x1 = self.ln1(x)
|
| 85 |
+
x2, y1 = self.attn(x1, y)
|
| 86 |
x2 = x1 + x2
|
| 87 |
y2 = y1 + y
|
| 88 |
x2 = self.ln3(x2)
|
|
|
|
| 102 |
|
| 103 |
def forward(self, x, y):
|
| 104 |
for Encoder_Block in self.Encoder_Blocks:
|
| 105 |
+
x, y = Encoder_Block(x, y)
|
| 106 |
return x, y
|
loss.py
CHANGED
|
@@ -1,36 +1,60 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
|
| 4 |
-
def discriminator_loss(generator, discriminator,
|
| 5 |
# Compute loss with real molecules.
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
prediction_real = - torch.mean(logits_real_disc)
|
| 8 |
|
| 9 |
# Compute loss with fake molecules.
|
| 10 |
node, edge, node_sample, edge_sample = generator(z_edge, z_node)
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
prediction_fake = torch.mean(logits_fake_disc)
|
| 14 |
|
| 15 |
-
# Compute gradient
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
# Calculate total loss
|
| 22 |
-
d_loss = prediction_fake + prediction_real + d_loss_gp * lambda_gp
|
| 23 |
return node, edge, d_loss
|
| 24 |
|
| 25 |
|
| 26 |
-
def generator_loss(generator, discriminator, adj, annot, batch_size):
|
| 27 |
# Compute loss with fake molecules.
|
| 28 |
node, edge, node_sample, edge_sample = generator(adj, annot)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1)
|
| 31 |
-
|
| 32 |
-
logits_fake_disc = discriminator(graph)
|
| 33 |
prediction_fake = - torch.mean(logits_fake_disc)
|
|
|
|
| 34 |
g_loss = prediction_fake
|
| 35 |
|
| 36 |
return g_loss, node, edge, node_sample, edge_sample
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
|
| 4 |
+
def discriminator_loss(generator, discriminator, drug_edge, drug_node, batch_size, device, grad_pen, lambda_gp, z_edge, z_node, submodel):
|
| 5 |
# Compute loss with real molecules.
|
| 6 |
+
if submodel == "DrugGEN":
|
| 7 |
+
logits_real_disc = discriminator(drug_edge, drug_node)
|
| 8 |
+
else:
|
| 9 |
+
logits_real_disc = discriminator(drug_node)
|
| 10 |
+
|
| 11 |
prediction_real = - torch.mean(logits_real_disc)
|
| 12 |
|
| 13 |
# Compute loss with fake molecules.
|
| 14 |
node, edge, node_sample, edge_sample = generator(z_edge, z_node)
|
| 15 |
+
if submodel == "DrugGEN":
|
| 16 |
+
logits_fake_disc = discriminator(edge_sample, node_sample)
|
| 17 |
+
else:
|
| 18 |
+
graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1)
|
| 19 |
+
logits_fake_disc = discriminator(graph.detach())
|
| 20 |
+
|
| 21 |
prediction_fake = torch.mean(logits_fake_disc)
|
| 22 |
|
| 23 |
+
# Compute gradient penalty.
|
| 24 |
+
eps_edge = torch.rand(batch_size, 1, 1, 1, device=device) # Shape adapted for broadcasting with edges and nodes
|
| 25 |
+
eps_node = torch.rand(batch_size, 1, 1, device=device) # Shape adapted for broadcasting with edges and nodes
|
| 26 |
+
int_node = eps_node * drug_node + (1 - eps_node) * node_sample
|
| 27 |
+
int_edge = eps_edge * drug_edge + (1 - eps_edge) * edge_sample
|
| 28 |
+
int_node.requires_grad_(True)
|
| 29 |
+
int_edge.requires_grad_(True)
|
| 30 |
+
|
| 31 |
+
# Compute discriminator output for interpolated samples
|
| 32 |
+
if submodel == "DrugGEN":
|
| 33 |
+
logits_interpolated = discriminator(int_edge, int_node)
|
| 34 |
+
else:
|
| 35 |
+
graph = torch.cat((int_node.view(batch_size, -1), int_edge.view(batch_size, -1)), dim=-1)
|
| 36 |
+
logits_interpolated = discriminator(graph)
|
| 37 |
+
|
| 38 |
+
# Compute gradient penalty for nodes and edges
|
| 39 |
+
grad_penalty = grad_pen(logits_interpolated, int_node)
|
| 40 |
+
|
| 41 |
+
# Calculate total discriminator loss
|
| 42 |
+
d_loss = prediction_fake + prediction_real + lambda_gp * grad_penalty
|
| 43 |
|
|
|
|
|
|
|
| 44 |
return node, edge, d_loss
|
| 45 |
|
| 46 |
|
| 47 |
+
def generator_loss(generator, discriminator, adj, annot, batch_size, submodel):
|
| 48 |
# Compute loss with fake molecules.
|
| 49 |
node, edge, node_sample, edge_sample = generator(adj, annot)
|
| 50 |
+
if submodel == "DrugGEN":
|
| 51 |
+
logits_fake_disc = discriminator(edge_sample, node_sample)
|
| 52 |
+
else:
|
| 53 |
+
graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1)
|
| 54 |
+
logits_fake_disc = discriminator(graph)
|
| 55 |
|
|
|
|
|
|
|
|
|
|
| 56 |
prediction_fake = - torch.mean(logits_fake_disc)
|
| 57 |
+
|
| 58 |
g_loss = prediction_fake
|
| 59 |
|
| 60 |
return g_loss, node, edge, node_sample, edge_sample
|
models.py
CHANGED
|
@@ -5,9 +5,8 @@ from layers import TransformerEncoder
|
|
| 5 |
class Generator(nn.Module):
|
| 6 |
"""Generator network."""
|
| 7 |
|
| 8 |
-
def __init__(self, act, vertexes, edges, nodes, dropout, dim, depth, heads, mlp_ratio
|
| 9 |
super(Generator, self).__init__()
|
| 10 |
-
self.submodel = submodel
|
| 11 |
self.vertexes = vertexes
|
| 12 |
self.edges = edges
|
| 13 |
self.nodes = nodes
|
|
@@ -30,8 +29,8 @@ class Generator(nn.Module):
|
|
| 30 |
self.transformer_dim = vertexes * vertexes * dim + vertexes * dim
|
| 31 |
self.pos_enc_dim = 5
|
| 32 |
|
| 33 |
-
self.node_layers = nn.Sequential(nn.Linear(nodes, 64), act, nn.Linear(64,dim), act, nn.Dropout(self.dropout))
|
| 34 |
-
self.edge_layers = nn.Sequential(nn.Linear(edges, 64), act, nn.Linear(64,dim), act, nn.Dropout(self.dropout))
|
| 35 |
self.TransformerEncoder = TransformerEncoder(dim=self.dim, depth=self.depth, heads=self.heads, act = act,
|
| 36 |
mlp_ratio=self.mlp_ratio, drop_rate=self.dropout)
|
| 37 |
|
|
@@ -63,12 +62,61 @@ class Generator(nn.Module):
|
|
| 63 |
edge = self.edge_layers(z_e)
|
| 64 |
edge = (edge + edge.permute(0, 2, 1, 3)) / 2
|
| 65 |
|
| 66 |
-
node, edge = self.TransformerEncoder(node,edge)
|
| 67 |
|
| 68 |
node_sample = self.readout_n(node)
|
| 69 |
edge_sample = self.readout_e(edge)
|
|
|
|
| 70 |
return node, edge, node_sample, edge_sample
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
class simple_disc(nn.Module):
|
| 74 |
def __init__(self, act, m_dim, vertexes, b_dim):
|
|
@@ -82,6 +130,8 @@ class simple_disc(nn.Module):
|
|
| 82 |
act = nn.Sigmoid()
|
| 83 |
elif act == "tanh":
|
| 84 |
act = nn.Tanh()
|
|
|
|
|
|
|
| 85 |
|
| 86 |
features = vertexes * m_dim + vertexes * vertexes * b_dim
|
| 87 |
self.predictor = nn.Sequential(nn.Linear(features,256), act, nn.Linear(256,128), act, nn.Linear(128,64), act,
|
|
@@ -90,4 +140,4 @@ class simple_disc(nn.Module):
|
|
| 90 |
|
| 91 |
def forward(self, x):
|
| 92 |
prediction = self.predictor(x)
|
| 93 |
-
return prediction
|
|
|
|
| 5 |
class Generator(nn.Module):
|
| 6 |
"""Generator network."""
|
| 7 |
|
| 8 |
+
def __init__(self, act, vertexes, edges, nodes, dropout, dim, depth, heads, mlp_ratio):
|
| 9 |
super(Generator, self).__init__()
|
|
|
|
| 10 |
self.vertexes = vertexes
|
| 11 |
self.edges = edges
|
| 12 |
self.nodes = nodes
|
|
|
|
| 29 |
self.transformer_dim = vertexes * vertexes * dim + vertexes * dim
|
| 30 |
self.pos_enc_dim = 5
|
| 31 |
|
| 32 |
+
self.node_layers = nn.Sequential(nn.Linear(nodes, 64), act, nn.Linear(64, dim), act, nn.Dropout(self.dropout))
|
| 33 |
+
self.edge_layers = nn.Sequential(nn.Linear(edges, 64), act, nn.Linear(64, dim), act, nn.Dropout(self.dropout))
|
| 34 |
self.TransformerEncoder = TransformerEncoder(dim=self.dim, depth=self.depth, heads=self.heads, act = act,
|
| 35 |
mlp_ratio=self.mlp_ratio, drop_rate=self.dropout)
|
| 36 |
|
|
|
|
| 62 |
edge = self.edge_layers(z_e)
|
| 63 |
edge = (edge + edge.permute(0, 2, 1, 3)) / 2
|
| 64 |
|
| 65 |
+
node, edge = self.TransformerEncoder(node, edge)
|
| 66 |
|
| 67 |
node_sample = self.readout_n(node)
|
| 68 |
edge_sample = self.readout_e(edge)
|
| 69 |
+
|
| 70 |
return node, edge, node_sample, edge_sample
|
| 71 |
|
| 72 |
+
class Discriminator(nn.Module):
|
| 73 |
+
|
| 74 |
+
def __init__(self, act, vertexes, edges, nodes, dropout, dim, depth, heads, mlp_ratio):
|
| 75 |
+
super(Discriminator, self).__init__()
|
| 76 |
+
self.vertexes = vertexes
|
| 77 |
+
self.edges = edges
|
| 78 |
+
self.nodes = nodes
|
| 79 |
+
self.depth = depth
|
| 80 |
+
self.dim = dim
|
| 81 |
+
self.heads = heads
|
| 82 |
+
self.mlp_ratio = mlp_ratio
|
| 83 |
+
self.dropout = dropout
|
| 84 |
+
|
| 85 |
+
if act == "relu":
|
| 86 |
+
act = nn.ReLU()
|
| 87 |
+
elif act == "leaky":
|
| 88 |
+
act = nn.LeakyReLU()
|
| 89 |
+
elif act == "sigmoid":
|
| 90 |
+
act = nn.Sigmoid()
|
| 91 |
+
elif act == "tanh":
|
| 92 |
+
act = nn.Tanh()
|
| 93 |
+
|
| 94 |
+
self.features = vertexes * vertexes * edges + vertexes * nodes
|
| 95 |
+
self.transformer_dim = vertexes * vertexes * dim + vertexes * dim
|
| 96 |
+
|
| 97 |
+
self.node_layers = nn.Sequential(nn.Linear(nodes, 64), act, nn.Linear(64, dim), act, nn.Dropout(self.dropout))
|
| 98 |
+
self.edge_layers = nn.Sequential(nn.Linear(edges, 64), act, nn.Linear(64, dim), act, nn.Dropout(self.dropout))
|
| 99 |
+
self.TransformerEncoder = TransformerEncoder(dim=self.dim, depth=self.depth, heads=self.heads, act = act,
|
| 100 |
+
mlp_ratio=self.mlp_ratio, drop_rate=self.dropout)
|
| 101 |
+
self.node_features = vertexes * dim
|
| 102 |
+
self.edge_features = vertexes * vertexes * dim
|
| 103 |
+
self.node_mlp = nn.Sequential(nn.Linear(self.node_features, 64), act, nn.Linear(64, 32), act, nn.Linear(32, 16), act, nn.Linear(16, 1))
|
| 104 |
+
|
| 105 |
+
def forward(self, z_e, z_n):
|
| 106 |
+
b, n, c = z_n.shape
|
| 107 |
+
_, _, _ , d = z_e.shape
|
| 108 |
+
|
| 109 |
+
node = self.node_layers(z_n)
|
| 110 |
+
edge = self.edge_layers(z_e)
|
| 111 |
+
edge = (edge + edge.permute(0, 2, 1, 3)) / 2
|
| 112 |
+
|
| 113 |
+
node, edge = self.TransformerEncoder(node, edge)
|
| 114 |
+
|
| 115 |
+
node = node.view(b, -1)
|
| 116 |
+
|
| 117 |
+
prediction = self.node_mlp(node)
|
| 118 |
+
|
| 119 |
+
return prediction
|
| 120 |
|
| 121 |
class simple_disc(nn.Module):
|
| 122 |
def __init__(self, act, m_dim, vertexes, b_dim):
|
|
|
|
| 130 |
act = nn.Sigmoid()
|
| 131 |
elif act == "tanh":
|
| 132 |
act = nn.Tanh()
|
| 133 |
+
else:
|
| 134 |
+
raise ValueError("Unsupported activation function: {}".format(act))
|
| 135 |
|
| 136 |
features = vertexes * m_dim + vertexes * vertexes * b_dim
|
| 137 |
self.predictor = nn.Sequential(nn.Linear(features,256), act, nn.Linear(256,128), act, nn.Linear(128,64), act,
|
|
|
|
| 140 |
|
| 141 |
def forward(self, x):
|
| 142 |
prediction = self.predictor(x)
|
| 143 |
+
return prediction
|
smiles_cor.py
ADDED
|
@@ -0,0 +1,1291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import os
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import random
|
| 5 |
+
from chembl_structure_pipeline import standardizer
|
| 6 |
+
from rdkit.Chem import MolStandardize
|
| 7 |
+
from rdkit import Chem
|
| 8 |
+
import time
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
from torchtext.data import TabularDataset, Field, BucketIterator, Iterator
|
| 12 |
+
import random
|
| 13 |
+
import os
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
from torch.utils.data import DataLoader
|
| 17 |
+
import random
|
| 18 |
+
from torch import optim
|
| 19 |
+
import numpy as np
|
| 20 |
+
import itertools
|
| 21 |
+
import time
|
| 22 |
+
import statistics
|
| 23 |
+
from rdkit.Chem import GraphDescriptors, Lipinski, AllChem
|
| 24 |
+
from rdkit.Chem.rdSLNParse import MolFromSLN
|
| 25 |
+
from rdkit.Chem.rdmolfiles import MolFromSmiles
|
| 26 |
+
import torch
|
| 27 |
+
import torch.nn as nn
|
| 28 |
+
import torch.optim as optim
|
| 29 |
+
import pandas as pd
|
| 30 |
+
import numpy as np
|
| 31 |
+
from rdkit import rdBase, Chem
|
| 32 |
+
import re
|
| 33 |
+
from rdkit import RDLogger
|
| 34 |
+
RDLogger.DisableLog('rdApp.*')
|
| 35 |
+
|
| 36 |
+
SEED = 42
|
| 37 |
+
random.seed(SEED)
|
| 38 |
+
torch.manual_seed(SEED)
|
| 39 |
+
torch.backends.cudnn.deterministic = True
|
| 40 |
+
|
| 41 |
+
##################################################################################################
|
| 42 |
+
##################################################################################################
|
| 43 |
+
# #
|
| 44 |
+
# THIS SCRIPT IS DIRECTLY ADAPTED FROM https://github.com/LindeSchoenmaker/SMILES-corrector #
|
| 45 |
+
# #
|
| 46 |
+
##################################################################################################
|
| 47 |
+
##################################################################################################
|
| 48 |
+
def is_smiles(array,
|
| 49 |
+
TRG,
|
| 50 |
+
reverse: bool,
|
| 51 |
+
return_output=False,
|
| 52 |
+
src=None,
|
| 53 |
+
src_field=None):
|
| 54 |
+
"""Turns predicted tokens within batch into smiles and evaluates their validity
|
| 55 |
+
Arguments:
|
| 56 |
+
array: Tensor with most probable token for each location for each sequence in batch
|
| 57 |
+
[trg len, batch size]
|
| 58 |
+
TRG: target field for getting tokens from vocab
|
| 59 |
+
reverse (bool): True if the target sequence is reversed
|
| 60 |
+
return_output (bool): True if output sequences and their validity should be saved
|
| 61 |
+
Returns:
|
| 62 |
+
df: dataframe with correct and incorrect sequences
|
| 63 |
+
valids: list with booleans that show if prediction was a valid SMILES (True) or invalid one (False)
|
| 64 |
+
smiless: list of the predicted smiles
|
| 65 |
+
"""
|
| 66 |
+
trg_field = TRG
|
| 67 |
+
valids = []
|
| 68 |
+
smiless = []
|
| 69 |
+
if return_output:
|
| 70 |
+
df = pd.DataFrame()
|
| 71 |
+
else:
|
| 72 |
+
df = None
|
| 73 |
+
batch_size = array.size(1)
|
| 74 |
+
# check if the first token should be removed, first token is zero because
|
| 75 |
+
# outputs initaliazed to all be zeros
|
| 76 |
+
if int((array[0, 0]).tolist()) == 0:
|
| 77 |
+
start = 1
|
| 78 |
+
else:
|
| 79 |
+
start = 0
|
| 80 |
+
# for each sequence in the batch
|
| 81 |
+
for i in range(0, batch_size):
|
| 82 |
+
# turns sequence from tensor to list skipps first row as this is not
|
| 83 |
+
# filled in in forward
|
| 84 |
+
sequence = (array[start:, i]).tolist()
|
| 85 |
+
# goes from embedded to tokens
|
| 86 |
+
trg_tokens = [trg_field.vocab.itos[int(t)] for t in sequence]
|
| 87 |
+
# print(trg_tokens)
|
| 88 |
+
# takes all tokens untill eos token, model would be faster if did this
|
| 89 |
+
# one step earlier, but then changes in vocab order would disrupt.
|
| 90 |
+
rev_tokens = list(
|
| 91 |
+
itertools.takewhile(lambda x: x != "<eos>", trg_tokens))
|
| 92 |
+
if reverse:
|
| 93 |
+
rev_tokens = rev_tokens[::-1]
|
| 94 |
+
smiles = "".join(rev_tokens)
|
| 95 |
+
# determine how many valid smiles are made
|
| 96 |
+
valid = True if MolFromSmiles(smiles) else False
|
| 97 |
+
valids.append(valid)
|
| 98 |
+
smiless.append(smiles)
|
| 99 |
+
if return_output:
|
| 100 |
+
if valid:
|
| 101 |
+
df.loc[i, "CORRECT"] = smiles
|
| 102 |
+
else:
|
| 103 |
+
df.loc[i, "INCORRECT"] = smiles
|
| 104 |
+
|
| 105 |
+
# add the original drugex outputs to the _de dataframe
|
| 106 |
+
if return_output and src is not None:
|
| 107 |
+
for i in range(0, batch_size):
|
| 108 |
+
# turns sequence from tensor to list skipps first row as this is
|
| 109 |
+
# <sos> for src
|
| 110 |
+
sequence = (src[1:, i]).tolist()
|
| 111 |
+
# goes from embedded to tokens
|
| 112 |
+
src_tokens = [src_field.vocab.itos[int(t)] for t in sequence]
|
| 113 |
+
# takes all tokens untill eos token, model would be faster if did
|
| 114 |
+
# this one step earlier, but then changes in vocab order would
|
| 115 |
+
# disrupt.
|
| 116 |
+
rev_tokens = list(
|
| 117 |
+
itertools.takewhile(lambda x: x != "<eos>", src_tokens))
|
| 118 |
+
smiles = "".join(rev_tokens)
|
| 119 |
+
df.loc[i, "ORIGINAL"] = smiles
|
| 120 |
+
|
| 121 |
+
return df, valids, smiless
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def is_unchanged(array,
|
| 125 |
+
TRG,
|
| 126 |
+
reverse: bool,
|
| 127 |
+
return_output=False,
|
| 128 |
+
src=None,
|
| 129 |
+
src_field=None):
|
| 130 |
+
"""Checks is output is different from input
|
| 131 |
+
Arguments:
|
| 132 |
+
array: Tensor with most probable token for each location for each sequence in batch
|
| 133 |
+
[trg len, batch size]
|
| 134 |
+
TRG: target field for getting tokens from vocab
|
| 135 |
+
reverse (bool): True if the target sequence is reversed
|
| 136 |
+
return_output (bool): True if output sequences and their validity should be saved
|
| 137 |
+
Returns:
|
| 138 |
+
df: dataframe with correct and incorrect sequences
|
| 139 |
+
valids: list with booleans that show if prediction was a valid SMILES (True) or invalid one (False)
|
| 140 |
+
smiless: list of the predicted smiles
|
| 141 |
+
"""
|
| 142 |
+
trg_field = TRG
|
| 143 |
+
sources = []
|
| 144 |
+
batch_size = array.size(1)
|
| 145 |
+
unchanged = 0
|
| 146 |
+
|
| 147 |
+
# check if the first token should be removed, first token is zero because
|
| 148 |
+
# outputs initaliazed to all be zeros
|
| 149 |
+
if int((array[0, 0]).tolist()) == 0:
|
| 150 |
+
start = 1
|
| 151 |
+
else:
|
| 152 |
+
start = 0
|
| 153 |
+
|
| 154 |
+
for i in range(0, batch_size):
|
| 155 |
+
# turns sequence from tensor to list skipps first row as this is <sos>
|
| 156 |
+
# for src
|
| 157 |
+
sequence = (src[1:, i]).tolist()
|
| 158 |
+
# goes from embedded to tokens
|
| 159 |
+
src_tokens = [src_field.vocab.itos[int(t)] for t in sequence]
|
| 160 |
+
# takes all tokens untill eos token, model would be faster if did this
|
| 161 |
+
# one step earlier, but then changes in vocab order would disrupt.
|
| 162 |
+
rev_tokens = list(
|
| 163 |
+
itertools.takewhile(lambda x: x != "<eos>", src_tokens))
|
| 164 |
+
smiles = "".join(rev_tokens)
|
| 165 |
+
sources.append(smiles)
|
| 166 |
+
|
| 167 |
+
# for each sequence in the batch
|
| 168 |
+
for i in range(0, batch_size):
|
| 169 |
+
# turns sequence from tensor to list skipps first row as this is not
|
| 170 |
+
# filled in in forward
|
| 171 |
+
sequence = (array[start:, i]).tolist()
|
| 172 |
+
# goes from embedded to tokens
|
| 173 |
+
trg_tokens = [trg_field.vocab.itos[int(t)] for t in sequence]
|
| 174 |
+
# print(trg_tokens)
|
| 175 |
+
# takes all tokens untill eos token, model would be faster if did this
|
| 176 |
+
# one step earlier, but then changes in vocab order would disrupt.
|
| 177 |
+
rev_tokens = list(
|
| 178 |
+
itertools.takewhile(lambda x: x != "<eos>", trg_tokens))
|
| 179 |
+
if reverse:
|
| 180 |
+
rev_tokens = rev_tokens[::-1]
|
| 181 |
+
smiles = "".join(rev_tokens)
|
| 182 |
+
# determine how many valid smiles are made
|
| 183 |
+
valid = True if MolFromSmiles(smiles) else False
|
| 184 |
+
if not valid:
|
| 185 |
+
if smiles == sources[i]:
|
| 186 |
+
unchanged += 1
|
| 187 |
+
|
| 188 |
+
return unchanged
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def molecule_reconstruction(array, TRG, reverse: bool, outputs):
|
| 192 |
+
"""Turns target tokens within batch into smiles and compares them to predicted output smiles
|
| 193 |
+
Arguments:
|
| 194 |
+
array: Tensor with target's token for each location for each sequence in batch
|
| 195 |
+
[trg len, batch size]
|
| 196 |
+
TRG: target field for getting tokens from vocab
|
| 197 |
+
reverse (bool): True if the target sequence is reversed
|
| 198 |
+
outputs: list of predicted SMILES sequences
|
| 199 |
+
Returns:
|
| 200 |
+
matches(int): number of total right molecules
|
| 201 |
+
"""
|
| 202 |
+
trg_field = TRG
|
| 203 |
+
matches = 0
|
| 204 |
+
targets = []
|
| 205 |
+
batch_size = array.size(1)
|
| 206 |
+
# for each sequence in the batch
|
| 207 |
+
for i in range(0, batch_size):
|
| 208 |
+
# turns sequence from tensor to list skipps first row as this is not
|
| 209 |
+
# filled in in forward
|
| 210 |
+
sequence = (array[1:, i]).tolist()
|
| 211 |
+
# goes from embedded to tokens
|
| 212 |
+
trg_tokens = [trg_field.vocab.itos[int(t)] for t in sequence]
|
| 213 |
+
# takes all tokens untill eos token, model would be faster if did this
|
| 214 |
+
# one step earlier, but then changes in vocab order would disrupt.
|
| 215 |
+
rev_tokens = list(
|
| 216 |
+
itertools.takewhile(lambda x: x != "<eos>", trg_tokens))
|
| 217 |
+
if reverse:
|
| 218 |
+
rev_tokens = rev_tokens[::-1]
|
| 219 |
+
smiles = "".join(rev_tokens)
|
| 220 |
+
targets.append(smiles)
|
| 221 |
+
for i in range(0, batch_size):
|
| 222 |
+
m = MolFromSmiles(targets[i])
|
| 223 |
+
p = MolFromSmiles(outputs[i])
|
| 224 |
+
if p is not None:
|
| 225 |
+
if m.HasSubstructMatch(p) and p.HasSubstructMatch(m):
|
| 226 |
+
matches += 1
|
| 227 |
+
return matches
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def complexity_whitlock(mol: Chem.Mol, includeAllDescs=False):
|
| 231 |
+
"""
|
| 232 |
+
Complexity as defined in DOI:10.1021/jo9814546
|
| 233 |
+
S: complexity = 4*#rings + 2*#unsat + #hetatm + 2*#chiral
|
| 234 |
+
Other descriptors:
|
| 235 |
+
H: size = #bonds (Hydrogen atoms included)
|
| 236 |
+
G: S + H
|
| 237 |
+
Ratio: S / H
|
| 238 |
+
"""
|
| 239 |
+
mol_ = Chem.Mol(mol)
|
| 240 |
+
nrings = Lipinski.RingCount(mol_) - Lipinski.NumAromaticRings(mol_)
|
| 241 |
+
Chem.rdmolops.SetAromaticity(mol_)
|
| 242 |
+
unsat = sum(1 for bond in mol_.GetBonds()
|
| 243 |
+
if bond.GetBondTypeAsDouble() == 2)
|
| 244 |
+
hetatm = len(mol_.GetSubstructMatches(Chem.MolFromSmarts("[!#6]")))
|
| 245 |
+
AllChem.EmbedMolecule(mol_)
|
| 246 |
+
Chem.AssignAtomChiralTagsFromStructure(mol_)
|
| 247 |
+
chiral = len(Chem.FindMolChiralCenters(mol_))
|
| 248 |
+
S = 4 * nrings + 2 * unsat + hetatm + 2 * chiral
|
| 249 |
+
if not includeAllDescs:
|
| 250 |
+
return S
|
| 251 |
+
Chem.rdmolops.Kekulize(mol_)
|
| 252 |
+
mol_ = Chem.AddHs(mol_)
|
| 253 |
+
H = sum(bond.GetBondTypeAsDouble() for bond in mol_.GetBonds())
|
| 254 |
+
G = S + H
|
| 255 |
+
R = S / H
|
| 256 |
+
return {"WhitlockS": S, "WhitlockH": H, "WhitlockG": G, "WhitlockRatio": R}
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def complexity_baronechanon(mol: Chem.Mol):
|
| 260 |
+
"""
|
| 261 |
+
Complexity as defined in DOI:10.1021/ci000145p
|
| 262 |
+
"""
|
| 263 |
+
mol_ = Chem.Mol(mol)
|
| 264 |
+
Chem.Kekulize(mol_)
|
| 265 |
+
Chem.RemoveStereochemistry(mol_)
|
| 266 |
+
mol_ = Chem.RemoveHs(mol_, updateExplicitCount=True)
|
| 267 |
+
degree, counts = 0, 0
|
| 268 |
+
for atom in mol_.GetAtoms():
|
| 269 |
+
degree += 3 * 2**(atom.GetExplicitValence() - atom.GetNumExplicitHs() -
|
| 270 |
+
1)
|
| 271 |
+
counts += 3 if atom.GetSymbol() == "C" else 6
|
| 272 |
+
ringterm = sum(map(lambda x: 6 * len(x), mol_.GetRingInfo().AtomRings()))
|
| 273 |
+
return degree + counts + ringterm
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
def calc_complexity(array,
|
| 277 |
+
TRG,
|
| 278 |
+
reverse,
|
| 279 |
+
valids,
|
| 280 |
+
complexity_function=GraphDescriptors.BertzCT):
|
| 281 |
+
"""Calculates the complexity of inputs that are not correct.
|
| 282 |
+
Arguments:
|
| 283 |
+
array: Tensor with target's token for each location for each sequence in batch
|
| 284 |
+
[trg len, batch size]
|
| 285 |
+
TRG: target field for getting tokens from vocab
|
| 286 |
+
reverse (bool): True if the target sequence is reversed
|
| 287 |
+
valids: list with booleans that show if prediction was a valid SMILES (True) or invalid one (False)
|
| 288 |
+
complexity_function: the type of complexity measure that will be used
|
| 289 |
+
GraphDescriptors.BertzCT
|
| 290 |
+
complexity_whitlock
|
| 291 |
+
complexity_baronechanon
|
| 292 |
+
Returns:
|
| 293 |
+
matches(int): mean of complexity values
|
| 294 |
+
"""
|
| 295 |
+
trg_field = TRG
|
| 296 |
+
sources = []
|
| 297 |
+
complexities = []
|
| 298 |
+
loc = torch.BoolTensor(valids)
|
| 299 |
+
# only keeps rows in batch size dimension where valid is false
|
| 300 |
+
array = array[:, loc == False]
|
| 301 |
+
# should check if this still works
|
| 302 |
+
# array = torch.transpose(array, 0, 1)
|
| 303 |
+
array_size = array.size(1)
|
| 304 |
+
for i in range(0, array_size):
|
| 305 |
+
# turns sequence from tensor to list skipps first row as this is not
|
| 306 |
+
# filled in in forward
|
| 307 |
+
sequence = (array[1:, i]).tolist()
|
| 308 |
+
# goes from embedded to tokens
|
| 309 |
+
trg_tokens = [trg_field.vocab.itos[int(t)] for t in sequence]
|
| 310 |
+
# takes all tokens untill eos token, model would be faster if did this
|
| 311 |
+
# one step earlier, but then changes in vocab order would disrupt.
|
| 312 |
+
rev_tokens = list(
|
| 313 |
+
itertools.takewhile(lambda x: x != "<eos>", trg_tokens))
|
| 314 |
+
if reverse:
|
| 315 |
+
rev_tokens = rev_tokens[::-1]
|
| 316 |
+
smiles = "".join(rev_tokens)
|
| 317 |
+
sources.append(smiles)
|
| 318 |
+
for source in sources:
|
| 319 |
+
try:
|
| 320 |
+
m = MolFromSmiles(source)
|
| 321 |
+
except BaseException:
|
| 322 |
+
m = MolFromSLN(source)
|
| 323 |
+
complexities.append(complexity_function(m))
|
| 324 |
+
if len(complexities) > 0:
|
| 325 |
+
mean = statistics.mean(complexities)
|
| 326 |
+
else:
|
| 327 |
+
mean = 0
|
| 328 |
+
return mean
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def epoch_time(start_time, end_time):
|
| 332 |
+
elapsed_time = end_time - start_time
|
| 333 |
+
elapsed_mins = int(elapsed_time / 60)
|
| 334 |
+
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
|
| 335 |
+
return elapsed_mins, elapsed_secs
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
class Convo:
|
| 339 |
+
"""Class for training and evaluating transformer and convolutional neural network
|
| 340 |
+
|
| 341 |
+
Methods
|
| 342 |
+
-------
|
| 343 |
+
train_model()
|
| 344 |
+
train model for initialized number of epochs
|
| 345 |
+
evaluate(return_output)
|
| 346 |
+
use model with validation loader (& optionally drugex loader) to get test loss & other metrics
|
| 347 |
+
translate(loader)
|
| 348 |
+
translate inputs from loader (different from evaluate in that no target sequence is used)
|
| 349 |
+
"""
|
| 350 |
+
|
| 351 |
+
def train_model(self):
|
| 352 |
+
optimizer = optim.Adam(self.parameters(), lr=self.lr)
|
| 353 |
+
log = open(f"{self.out}.log", "a")
|
| 354 |
+
best_error = np.inf
|
| 355 |
+
for epoch in range(self.epochs):
|
| 356 |
+
self.train()
|
| 357 |
+
start_time = time.time()
|
| 358 |
+
loss_train = 0
|
| 359 |
+
for i, batch in enumerate(self.loader_train):
|
| 360 |
+
optimizer.zero_grad()
|
| 361 |
+
# changed src,trg call to match with bentrevett
|
| 362 |
+
# src, trg = batch['src'], batch['trg']
|
| 363 |
+
trg = batch.trg
|
| 364 |
+
src = batch.src
|
| 365 |
+
output, attention = self(src, trg[:, :-1])
|
| 366 |
+
# feed the source and target into def forward to get the output
|
| 367 |
+
# Xuhan uses forward for this, with istrain = true
|
| 368 |
+
output_dim = output.shape[-1]
|
| 369 |
+
# changed
|
| 370 |
+
output = output.contiguous().view(-1, output_dim)
|
| 371 |
+
trg = trg[:, 1:].contiguous().view(-1)
|
| 372 |
+
# output = output[:,:,0]#.view(-1)
|
| 373 |
+
# output = output[1:].view(-1, output.shape[-1])
|
| 374 |
+
# trg = trg[1:].view(-1)
|
| 375 |
+
loss = nn.CrossEntropyLoss(
|
| 376 |
+
ignore_index=self.TRG.vocab.stoi[self.TRG.pad_token])
|
| 377 |
+
a, b = output.view(-1), trg.to(self.device).view(-1)
|
| 378 |
+
# changed
|
| 379 |
+
# loss = loss(output.view(0), trg.view(0).to(device))
|
| 380 |
+
loss = loss(output, trg)
|
| 381 |
+
loss.backward()
|
| 382 |
+
torch.nn.utils.clip_grad_norm_(self.parameters(), self.clip)
|
| 383 |
+
optimizer.step()
|
| 384 |
+
loss_train += loss.item()
|
| 385 |
+
# turned off for now, as not using voc so won't work, output is a tensor
|
| 386 |
+
# output = [(trg len - 1) * batch size, output dim]
|
| 387 |
+
# smiles, valid = is_valid_smiles(output, reversed)
|
| 388 |
+
# if valid:
|
| 389 |
+
# valids += 1
|
| 390 |
+
# smiless.append(smiles)
|
| 391 |
+
# added .dataset becaue len(iterator) gives len(self.dataset) /
|
| 392 |
+
# self.batch_size)
|
| 393 |
+
loss_train /= len(self.loader_train)
|
| 394 |
+
info = f"Epoch: {epoch+1:02} step: {i} loss_train: {loss_train:.4g}"
|
| 395 |
+
# model is used to generate trg based on src from the validation set to assess performance
|
| 396 |
+
# similar to Xuhan, although he doesn't use the if loop
|
| 397 |
+
if self.loader_valid is not None:
|
| 398 |
+
return_output = False
|
| 399 |
+
if epoch + 1 == self.epochs:
|
| 400 |
+
return_output = True
|
| 401 |
+
(
|
| 402 |
+
valids,
|
| 403 |
+
loss_valid,
|
| 404 |
+
valids_de,
|
| 405 |
+
df_output,
|
| 406 |
+
df_output_de,
|
| 407 |
+
right_molecules,
|
| 408 |
+
complexity,
|
| 409 |
+
unchanged,
|
| 410 |
+
unchanged_de,
|
| 411 |
+
) = self.evaluate(return_output)
|
| 412 |
+
reconstruction_error = 1 - right_molecules / len(
|
| 413 |
+
self.loader_valid.dataset)
|
| 414 |
+
error = 1 - valids / len(self.loader_valid.dataset)
|
| 415 |
+
complexity = complexity / len(self.loader_valid)
|
| 416 |
+
unchan = unchanged / (len(self.loader_valid.dataset) - valids)
|
| 417 |
+
info += f" loss_valid: {loss_valid:.4g} error_rate: {error:.4g} molecule_reconstruction_error_rate: {reconstruction_error:.4g} unchanged: {unchan:.4g} invalid_target_complexity: {complexity:.4g}"
|
| 418 |
+
if self.loader_drugex is not None:
|
| 419 |
+
error_de = 1 - valids_de / len(self.loader_drugex.dataset)
|
| 420 |
+
unchan_de = unchanged_de / (
|
| 421 |
+
len(self.loader_drugex.dataset) - valids_de)
|
| 422 |
+
info += f" error_rate_drugex: {error_de:.4g} unchanged_drugex: {unchan_de:.4g}"
|
| 423 |
+
|
| 424 |
+
if reconstruction_error < best_error:
|
| 425 |
+
torch.save(self.state_dict(), f"{self.out}.pkg")
|
| 426 |
+
best_error = reconstruction_error
|
| 427 |
+
last_save = epoch
|
| 428 |
+
else:
|
| 429 |
+
if epoch - last_save >= 10 and best_error != 1:
|
| 430 |
+
torch.save(self.state_dict(), f"{self.out}_last.pkg")
|
| 431 |
+
(
|
| 432 |
+
valids,
|
| 433 |
+
loss_valid,
|
| 434 |
+
valids_de,
|
| 435 |
+
df_output,
|
| 436 |
+
df_output_de,
|
| 437 |
+
right_molecules,
|
| 438 |
+
complexity,
|
| 439 |
+
unchanged,
|
| 440 |
+
unchanged_de,
|
| 441 |
+
) = self.evaluate(True)
|
| 442 |
+
end_time = time.time()
|
| 443 |
+
epoch_mins, epoch_secs = epoch_time(
|
| 444 |
+
start_time, end_time)
|
| 445 |
+
info += f" Time: {epoch_mins}m {epoch_secs}s"
|
| 446 |
+
|
| 447 |
+
break
|
| 448 |
+
elif error < best_error:
|
| 449 |
+
torch.save(self.state_dict(), f"{self.out}.pkg")
|
| 450 |
+
best_error = error
|
| 451 |
+
end_time = time.time()
|
| 452 |
+
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
|
| 453 |
+
info += f" Time: {epoch_mins}m {epoch_secs}s"
|
| 454 |
+
|
| 455 |
+
|
| 456 |
+
torch.save(self.state_dict(), f"{self.out}_last.pkg")
|
| 457 |
+
log.close()
|
| 458 |
+
self.load_state_dict(torch.load(f"{self.out}.pkg"))
|
| 459 |
+
df_output.to_csv(f"{self.out}.csv", index=False)
|
| 460 |
+
df_output_de.to_csv(f"{self.out}_de.csv", index=False)
|
| 461 |
+
|
| 462 |
+
def evaluate(self, return_output):
|
| 463 |
+
self.eval()
|
| 464 |
+
test_loss = 0
|
| 465 |
+
df_output = pd.DataFrame()
|
| 466 |
+
df_output_de = pd.DataFrame()
|
| 467 |
+
valids = 0
|
| 468 |
+
valids_de = 0
|
| 469 |
+
unchanged = 0
|
| 470 |
+
unchanged_de = 0
|
| 471 |
+
right_molecules = 0
|
| 472 |
+
complexity = 0
|
| 473 |
+
with torch.no_grad():
|
| 474 |
+
for _, batch in enumerate(self.loader_valid):
|
| 475 |
+
trg = batch.trg
|
| 476 |
+
src = batch.src
|
| 477 |
+
output, attention = self.forward(src, trg[:, :-1])
|
| 478 |
+
pred_token = output.argmax(2)
|
| 479 |
+
array = torch.transpose(pred_token, 0, 1)
|
| 480 |
+
trg_trans = torch.transpose(trg, 0, 1)
|
| 481 |
+
output_dim = output.shape[-1]
|
| 482 |
+
output = output.contiguous().view(-1, output_dim)
|
| 483 |
+
trg = trg[:, 1:].contiguous().view(-1)
|
| 484 |
+
src_trans = torch.transpose(src, 0, 1)
|
| 485 |
+
df_batch, valid, smiless = is_smiles(
|
| 486 |
+
array, self.TRG, reverse=True, return_output=return_output)
|
| 487 |
+
unchanged += is_unchanged(
|
| 488 |
+
array,
|
| 489 |
+
self.TRG,
|
| 490 |
+
reverse=True,
|
| 491 |
+
return_output=return_output,
|
| 492 |
+
src=src_trans,
|
| 493 |
+
src_field=self.SRC,
|
| 494 |
+
)
|
| 495 |
+
matches = molecule_reconstruction(trg_trans,
|
| 496 |
+
self.TRG,
|
| 497 |
+
reverse=True,
|
| 498 |
+
outputs=smiless)
|
| 499 |
+
complexity += calc_complexity(trg_trans,
|
| 500 |
+
self.TRG,
|
| 501 |
+
reverse=True,
|
| 502 |
+
valids=valid)
|
| 503 |
+
if df_batch is not None:
|
| 504 |
+
df_output = pd.concat([df_output, df_batch],
|
| 505 |
+
ignore_index=True)
|
| 506 |
+
right_molecules += matches
|
| 507 |
+
valids += sum(valid)
|
| 508 |
+
# trg = trg[1:].view(-1)
|
| 509 |
+
# output, trg = output[1:].view(-1, output.shape[-1]), trg[1:].view(-1)
|
| 510 |
+
loss = nn.CrossEntropyLoss(
|
| 511 |
+
ignore_index=self.TRG.vocab.stoi[self.TRG.pad_token])
|
| 512 |
+
loss = loss(output, trg)
|
| 513 |
+
test_loss += loss.item()
|
| 514 |
+
if self.loader_drugex is not None:
|
| 515 |
+
for _, batch in enumerate(self.loader_drugex):
|
| 516 |
+
src = batch.src
|
| 517 |
+
output = self.translate_sentence(src, self.TRG,
|
| 518 |
+
self.device)
|
| 519 |
+
# checks the number of valid smiles
|
| 520 |
+
pred_token = output.argmax(2)
|
| 521 |
+
array = torch.transpose(pred_token, 0, 1)
|
| 522 |
+
src_trans = torch.transpose(src, 0, 1)
|
| 523 |
+
df_batch, valid, smiless = is_smiles(
|
| 524 |
+
array,
|
| 525 |
+
self.TRG,
|
| 526 |
+
reverse=True,
|
| 527 |
+
return_output=return_output,
|
| 528 |
+
src=src_trans,
|
| 529 |
+
src_field=self.SRC,
|
| 530 |
+
)
|
| 531 |
+
unchanged_de += is_unchanged(
|
| 532 |
+
array,
|
| 533 |
+
self.TRG,
|
| 534 |
+
reverse=True,
|
| 535 |
+
return_output=return_output,
|
| 536 |
+
src=src_trans,
|
| 537 |
+
src_field=self.SRC,
|
| 538 |
+
)
|
| 539 |
+
if df_batch is not None:
|
| 540 |
+
df_output_de = pd.concat([df_output_de, df_batch],
|
| 541 |
+
ignore_index=True)
|
| 542 |
+
valids_de += sum(valid)
|
| 543 |
+
return (
|
| 544 |
+
valids,
|
| 545 |
+
test_loss / len(self.loader_valid),
|
| 546 |
+
valids_de,
|
| 547 |
+
df_output,
|
| 548 |
+
df_output_de,
|
| 549 |
+
right_molecules,
|
| 550 |
+
complexity,
|
| 551 |
+
unchanged,
|
| 552 |
+
unchanged_de,
|
| 553 |
+
)
|
| 554 |
+
|
| 555 |
+
def translate(self, loader):
|
| 556 |
+
self.eval()
|
| 557 |
+
df_output_de = pd.DataFrame()
|
| 558 |
+
valids_de = 0
|
| 559 |
+
with torch.no_grad():
|
| 560 |
+
for _, batch in enumerate(loader):
|
| 561 |
+
src = batch.src
|
| 562 |
+
output = self.translate_sentence(src, self.TRG, self.device)
|
| 563 |
+
# checks the number of valid smiles
|
| 564 |
+
pred_token = output.argmax(2)
|
| 565 |
+
array = torch.transpose(pred_token, 0, 1)
|
| 566 |
+
src_trans = torch.transpose(src, 0, 1)
|
| 567 |
+
df_batch, valid, smiless = is_smiles(
|
| 568 |
+
array,
|
| 569 |
+
self.TRG,
|
| 570 |
+
reverse=True,
|
| 571 |
+
return_output=True,
|
| 572 |
+
src=src_trans,
|
| 573 |
+
src_field=self.SRC,
|
| 574 |
+
)
|
| 575 |
+
if df_batch is not None:
|
| 576 |
+
df_output_de = pd.concat([df_output_de, df_batch],
|
| 577 |
+
ignore_index=True)
|
| 578 |
+
valids_de += sum(valid)
|
| 579 |
+
return valids_de, df_output_de
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
class Encoder(nn.Module):
|
| 583 |
+
|
| 584 |
+
def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout,
|
| 585 |
+
max_length, device):
|
| 586 |
+
super().__init__()
|
| 587 |
+
self.device = device
|
| 588 |
+
self.tok_embedding = nn.Embedding(input_dim, hid_dim)
|
| 589 |
+
self.pos_embedding = nn.Embedding(max_length, hid_dim)
|
| 590 |
+
self.layers = nn.ModuleList([
|
| 591 |
+
EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device)
|
| 592 |
+
for _ in range(n_layers)
|
| 593 |
+
])
|
| 594 |
+
|
| 595 |
+
self.dropout = nn.Dropout(dropout)
|
| 596 |
+
self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device)
|
| 597 |
+
|
| 598 |
+
def forward(self, src, src_mask):
|
| 599 |
+
# src = [batch size, src len]
|
| 600 |
+
# src_mask = [batch size, src len]
|
| 601 |
+
batch_size = src.shape[0]
|
| 602 |
+
src_len = src.shape[1]
|
| 603 |
+
pos = (torch.arange(0, src_len).unsqueeze(0).repeat(batch_size,
|
| 604 |
+
1).to(self.device))
|
| 605 |
+
# pos = [batch size, src len]
|
| 606 |
+
src = self.dropout((self.tok_embedding(src) * self.scale) +
|
| 607 |
+
self.pos_embedding(pos))
|
| 608 |
+
# src = [batch size, src len, hid dim]
|
| 609 |
+
for layer in self.layers:
|
| 610 |
+
src = layer(src, src_mask)
|
| 611 |
+
# src = [batch size, src len, hid dim]
|
| 612 |
+
return src
|
| 613 |
+
|
| 614 |
+
|
| 615 |
+
class EncoderLayer(nn.Module):
|
| 616 |
+
|
| 617 |
+
def __init__(self, hid_dim, n_heads, pf_dim, dropout, device):
|
| 618 |
+
super().__init__()
|
| 619 |
+
|
| 620 |
+
self.self_attn_layer_norm = nn.LayerNorm(hid_dim)
|
| 621 |
+
self.ff_layer_norm = nn.LayerNorm(hid_dim)
|
| 622 |
+
self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads,
|
| 623 |
+
dropout, device)
|
| 624 |
+
self.positionwise_feedforward = PositionwiseFeedforwardLayer(
|
| 625 |
+
hid_dim, pf_dim, dropout)
|
| 626 |
+
self.dropout = nn.Dropout(dropout)
|
| 627 |
+
|
| 628 |
+
def forward(self, src, src_mask):
|
| 629 |
+
# src = [batch size, src len, hid dim]
|
| 630 |
+
# src_mask = [batch size, src len]
|
| 631 |
+
# self attention
|
| 632 |
+
_src, _ = self.self_attention(src, src, src, src_mask)
|
| 633 |
+
# dropout, residual connection and layer norm
|
| 634 |
+
src = self.self_attn_layer_norm(src + self.dropout(_src))
|
| 635 |
+
# src = [batch size, src len, hid dim]
|
| 636 |
+
# positionwise feedforward
|
| 637 |
+
_src = self.positionwise_feedforward(src)
|
| 638 |
+
# dropout, residual and layer norm
|
| 639 |
+
src = self.ff_layer_norm(src + self.dropout(_src))
|
| 640 |
+
# src = [batch size, src len, hid dim]
|
| 641 |
+
|
| 642 |
+
return src
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
class MultiHeadAttentionLayer(nn.Module):
|
| 646 |
+
|
| 647 |
+
def __init__(self, hid_dim, n_heads, dropout, device):
|
| 648 |
+
super().__init__()
|
| 649 |
+
assert hid_dim % n_heads == 0
|
| 650 |
+
self.hid_dim = hid_dim
|
| 651 |
+
self.n_heads = n_heads
|
| 652 |
+
self.head_dim = hid_dim // n_heads
|
| 653 |
+
self.fc_q = nn.Linear(hid_dim, hid_dim)
|
| 654 |
+
self.fc_k = nn.Linear(hid_dim, hid_dim)
|
| 655 |
+
self.fc_v = nn.Linear(hid_dim, hid_dim)
|
| 656 |
+
self.fc_o = nn.Linear(hid_dim, hid_dim)
|
| 657 |
+
self.dropout = nn.Dropout(dropout)
|
| 658 |
+
self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device)
|
| 659 |
+
|
| 660 |
+
def forward(self, query, key, value, mask=None):
|
| 661 |
+
batch_size = query.shape[0]
|
| 662 |
+
# query = [batch size, query len, hid dim]
|
| 663 |
+
# key = [batch size, key len, hid dim]
|
| 664 |
+
# value = [batch size, value len, hid dim]
|
| 665 |
+
Q = self.fc_q(query)
|
| 666 |
+
K = self.fc_k(key)
|
| 667 |
+
V = self.fc_v(value)
|
| 668 |
+
# Q = [batch size, query len, hid dim]
|
| 669 |
+
# K = [batch size, key len, hid dim]
|
| 670 |
+
# V = [batch size, value len, hid dim]
|
| 671 |
+
Q = Q.view(batch_size, -1, self.n_heads,
|
| 672 |
+
self.head_dim).permute(0, 2, 1, 3)
|
| 673 |
+
K = K.view(batch_size, -1, self.n_heads,
|
| 674 |
+
self.head_dim).permute(0, 2, 1, 3)
|
| 675 |
+
V = V.view(batch_size, -1, self.n_heads,
|
| 676 |
+
self.head_dim).permute(0, 2, 1, 3)
|
| 677 |
+
# Q = [batch size, n heads, query len, head dim]
|
| 678 |
+
# K = [batch size, n heads, key len, head dim]
|
| 679 |
+
# V = [batch size, n heads, value len, head dim]
|
| 680 |
+
energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale
|
| 681 |
+
# energy = [batch size, n heads, query len, key len]
|
| 682 |
+
if mask is not None:
|
| 683 |
+
energy = energy.masked_fill(mask == 0, -1e10)
|
| 684 |
+
attention = torch.softmax(energy, dim=-1)
|
| 685 |
+
# attention = [batch size, n heads, query len, key len]
|
| 686 |
+
x = torch.matmul(self.dropout(attention), V)
|
| 687 |
+
# x = [batch size, n heads, query len, head dim]
|
| 688 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 689 |
+
# x = [batch size, query len, n heads, head dim]
|
| 690 |
+
x = x.view(batch_size, -1, self.hid_dim)
|
| 691 |
+
# x = [batch size, query len, hid dim]
|
| 692 |
+
x = self.fc_o(x)
|
| 693 |
+
# x = [batch size, query len, hid dim]
|
| 694 |
+
return x, attention
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
class PositionwiseFeedforwardLayer(nn.Module):
|
| 698 |
+
|
| 699 |
+
def __init__(self, hid_dim, pf_dim, dropout):
|
| 700 |
+
super().__init__()
|
| 701 |
+
self.fc_1 = nn.Linear(hid_dim, pf_dim)
|
| 702 |
+
self.fc_2 = nn.Linear(pf_dim, hid_dim)
|
| 703 |
+
self.dropout = nn.Dropout(dropout)
|
| 704 |
+
|
| 705 |
+
def forward(self, x):
|
| 706 |
+
# x = [batch size, seq len, hid dim]
|
| 707 |
+
x = self.dropout(torch.relu(self.fc_1(x)))
|
| 708 |
+
# x = [batch size, seq len, pf dim]
|
| 709 |
+
x = self.fc_2(x)
|
| 710 |
+
# x = [batch size, seq len, hid dim]
|
| 711 |
+
|
| 712 |
+
return x
|
| 713 |
+
|
| 714 |
+
|
| 715 |
+
class Decoder(nn.Module):
|
| 716 |
+
|
| 717 |
+
def __init__(
|
| 718 |
+
self,
|
| 719 |
+
output_dim,
|
| 720 |
+
hid_dim,
|
| 721 |
+
n_layers,
|
| 722 |
+
n_heads,
|
| 723 |
+
pf_dim,
|
| 724 |
+
dropout,
|
| 725 |
+
max_length,
|
| 726 |
+
device,
|
| 727 |
+
):
|
| 728 |
+
super().__init__()
|
| 729 |
+
self.device = device
|
| 730 |
+
self.tok_embedding = nn.Embedding(output_dim, hid_dim)
|
| 731 |
+
self.pos_embedding = nn.Embedding(max_length, hid_dim)
|
| 732 |
+
self.layers = nn.ModuleList([
|
| 733 |
+
DecoderLayer(hid_dim, n_heads, pf_dim, dropout, device)
|
| 734 |
+
for _ in range(n_layers)
|
| 735 |
+
])
|
| 736 |
+
self.fc_out = nn.Linear(hid_dim, output_dim)
|
| 737 |
+
self.dropout = nn.Dropout(dropout)
|
| 738 |
+
self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device)
|
| 739 |
+
|
| 740 |
+
def forward(self, trg, enc_src, trg_mask, src_mask):
|
| 741 |
+
# trg = [batch size, trg len]
|
| 742 |
+
# enc_src = [batch size, src len, hid dim]
|
| 743 |
+
# trg_mask = [batch size, trg len]
|
| 744 |
+
# src_mask = [batch size, src len]
|
| 745 |
+
batch_size = trg.shape[0]
|
| 746 |
+
trg_len = trg.shape[1]
|
| 747 |
+
pos = (torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size,
|
| 748 |
+
1).to(self.device))
|
| 749 |
+
# pos = [batch size, trg len]
|
| 750 |
+
trg = self.dropout((self.tok_embedding(trg) * self.scale) +
|
| 751 |
+
self.pos_embedding(pos))
|
| 752 |
+
# trg = [batch size, trg len, hid dim]
|
| 753 |
+
for layer in self.layers:
|
| 754 |
+
trg, attention = layer(trg, enc_src, trg_mask, src_mask)
|
| 755 |
+
# trg = [batch size, trg len, hid dim]
|
| 756 |
+
# attention = [batch size, n heads, trg len, src len]
|
| 757 |
+
output = self.fc_out(trg)
|
| 758 |
+
# output = [batch size, trg len, output dim]
|
| 759 |
+
return output, attention
|
| 760 |
+
|
| 761 |
+
|
| 762 |
+
class DecoderLayer(nn.Module):
|
| 763 |
+
|
| 764 |
+
def __init__(self, hid_dim, n_heads, pf_dim, dropout, device):
|
| 765 |
+
super().__init__()
|
| 766 |
+
self.self_attn_layer_norm = nn.LayerNorm(hid_dim)
|
| 767 |
+
self.enc_attn_layer_norm = nn.LayerNorm(hid_dim)
|
| 768 |
+
self.ff_layer_norm = nn.LayerNorm(hid_dim)
|
| 769 |
+
self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads,
|
| 770 |
+
dropout, device)
|
| 771 |
+
self.encoder_attention = MultiHeadAttentionLayer(
|
| 772 |
+
hid_dim, n_heads, dropout, device)
|
| 773 |
+
self.positionwise_feedforward = PositionwiseFeedforwardLayer(
|
| 774 |
+
hid_dim, pf_dim, dropout)
|
| 775 |
+
self.dropout = nn.Dropout(dropout)
|
| 776 |
+
|
| 777 |
+
def forward(self, trg, enc_src, trg_mask, src_mask):
|
| 778 |
+
# trg = [batch size, trg len, hid dim]
|
| 779 |
+
# enc_src = [batch size, src len, hid dim]
|
| 780 |
+
# trg_mask = [batch size, trg len]
|
| 781 |
+
# src_mask = [batch size, src len]
|
| 782 |
+
# self attention
|
| 783 |
+
_trg, _ = self.self_attention(trg, trg, trg, trg_mask)
|
| 784 |
+
# dropout, residual connection and layer norm
|
| 785 |
+
trg = self.self_attn_layer_norm(trg + self.dropout(_trg))
|
| 786 |
+
# trg = [batch size, trg len, hid dim]
|
| 787 |
+
# encoder attention
|
| 788 |
+
_trg, attention = self.encoder_attention(trg, enc_src, enc_src,
|
| 789 |
+
src_mask)
|
| 790 |
+
# dropout, residual connection and layer norm
|
| 791 |
+
trg = self.enc_attn_layer_norm(trg + self.dropout(_trg))
|
| 792 |
+
# trg = [batch size, trg len, hid dim]
|
| 793 |
+
# positionwise feedforward
|
| 794 |
+
_trg = self.positionwise_feedforward(trg)
|
| 795 |
+
# dropout, residual and layer norm
|
| 796 |
+
trg = self.ff_layer_norm(trg + self.dropout(_trg))
|
| 797 |
+
# trg = [batch size, trg len, hid dim]
|
| 798 |
+
# attention = [batch size, n heads, trg len, src len]
|
| 799 |
+
return trg, attention
|
| 800 |
+
|
| 801 |
+
|
| 802 |
+
class Seq2Seq(nn.Module, Convo):
|
| 803 |
+
|
| 804 |
+
def __init__(
|
| 805 |
+
self,
|
| 806 |
+
encoder,
|
| 807 |
+
decoder,
|
| 808 |
+
src_pad_idx,
|
| 809 |
+
trg_pad_idx,
|
| 810 |
+
device,
|
| 811 |
+
loader_train: DataLoader,
|
| 812 |
+
out: str,
|
| 813 |
+
loader_valid=None,
|
| 814 |
+
loader_drugex=None,
|
| 815 |
+
epochs=100,
|
| 816 |
+
lr=0.0005,
|
| 817 |
+
clip=0.1,
|
| 818 |
+
reverse=True,
|
| 819 |
+
TRG=None,
|
| 820 |
+
SRC=None,
|
| 821 |
+
):
|
| 822 |
+
super().__init__()
|
| 823 |
+
self.encoder = encoder
|
| 824 |
+
self.decoder = decoder
|
| 825 |
+
self.src_pad_idx = src_pad_idx
|
| 826 |
+
self.trg_pad_idx = trg_pad_idx
|
| 827 |
+
self.device = device
|
| 828 |
+
self.loader_train = loader_train
|
| 829 |
+
self.out = out
|
| 830 |
+
self.loader_valid = loader_valid
|
| 831 |
+
self.loader_drugex = loader_drugex
|
| 832 |
+
self.epochs = epochs
|
| 833 |
+
self.lr = lr
|
| 834 |
+
self.clip = clip
|
| 835 |
+
self.reverse = reverse
|
| 836 |
+
self.TRG = TRG
|
| 837 |
+
self.SRC = SRC
|
| 838 |
+
|
| 839 |
+
def make_src_mask(self, src):
|
| 840 |
+
# src = [batch size, src len]
|
| 841 |
+
src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
|
| 842 |
+
# src_mask = [batch size, 1, 1, src len]
|
| 843 |
+
return src_mask
|
| 844 |
+
|
| 845 |
+
def make_trg_mask(self, trg):
|
| 846 |
+
# trg = [batch size, trg len]
|
| 847 |
+
trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(2)
|
| 848 |
+
# trg_pad_mask = [batch size, 1, 1, trg len]
|
| 849 |
+
trg_len = trg.shape[1]
|
| 850 |
+
trg_sub_mask = torch.tril(
|
| 851 |
+
torch.ones((trg_len, trg_len), device=self.device)).bool()
|
| 852 |
+
# trg_sub_mask = [trg len, trg len]
|
| 853 |
+
trg_mask = trg_pad_mask & trg_sub_mask
|
| 854 |
+
# trg_mask = [batch size, 1, trg len, trg len]
|
| 855 |
+
return trg_mask
|
| 856 |
+
|
| 857 |
+
def forward(self, src, trg):
|
| 858 |
+
# src = [batch size, src len]
|
| 859 |
+
# trg = [batch size, trg len]
|
| 860 |
+
src_mask = self.make_src_mask(src)
|
| 861 |
+
trg_mask = self.make_trg_mask(trg)
|
| 862 |
+
# src_mask = [batch size, 1, 1, src len]
|
| 863 |
+
# trg_mask = [batch size, 1, trg len, trg len]
|
| 864 |
+
enc_src = self.encoder(src, src_mask)
|
| 865 |
+
# enc_src = [batch size, src len, hid dim]
|
| 866 |
+
output, attention = self.decoder(trg, enc_src, trg_mask, src_mask)
|
| 867 |
+
# output = [batch size, trg len, output dim]
|
| 868 |
+
# attention = [batch size, n heads, trg len, src len]
|
| 869 |
+
return output, attention
|
| 870 |
+
|
| 871 |
+
def translate_sentence(self, src, trg_field, device, max_len=202):
|
| 872 |
+
self.eval()
|
| 873 |
+
src_mask = self.make_src_mask(src)
|
| 874 |
+
with torch.no_grad():
|
| 875 |
+
enc_src = self.encoder(src, src_mask)
|
| 876 |
+
trg_indexes = [trg_field.vocab.stoi[trg_field.init_token]]
|
| 877 |
+
batch_size = src.shape[0]
|
| 878 |
+
trg = torch.LongTensor(trg_indexes).unsqueeze(0).to(device)
|
| 879 |
+
trg = trg.repeat(batch_size, 1)
|
| 880 |
+
for i in range(max_len):
|
| 881 |
+
# turned model into self.
|
| 882 |
+
trg_mask = self.make_trg_mask(trg)
|
| 883 |
+
with torch.no_grad():
|
| 884 |
+
output, attention = self.decoder(trg, enc_src, trg_mask,
|
| 885 |
+
src_mask)
|
| 886 |
+
pred_tokens = output.argmax(2)[:, -1].unsqueeze(1)
|
| 887 |
+
trg = torch.cat((trg, pred_tokens), 1)
|
| 888 |
+
|
| 889 |
+
return output
|
| 890 |
+
|
| 891 |
+
|
| 892 |
+
def remove_floats(df: pd.DataFrame, subset: str):
|
| 893 |
+
"""Preprocessing step to remove any entries that are not strings"""
|
| 894 |
+
df_subset = df[subset]
|
| 895 |
+
df[subset] = df[subset].astype(str)
|
| 896 |
+
# only keep entries that stayed the same after applying astype str
|
| 897 |
+
df = df[df[subset] == df_subset].copy()
|
| 898 |
+
|
| 899 |
+
return df
|
| 900 |
+
|
| 901 |
+
|
| 902 |
+
def smi_tokenizer(smi: str, reverse=False) -> list:
|
| 903 |
+
"""
|
| 904 |
+
Tokenize a SMILES molecule
|
| 905 |
+
"""
|
| 906 |
+
pattern = r"(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
|
| 907 |
+
regex = re.compile(pattern)
|
| 908 |
+
# tokens = ['<sos>'] + [token for token in regex.findall(smi)] + ['<eos>']
|
| 909 |
+
tokens = [token for token in regex.findall(smi)]
|
| 910 |
+
# assert smi == ''.join(tokens[1:-1])
|
| 911 |
+
assert smi == "".join(tokens[:])
|
| 912 |
+
# try:
|
| 913 |
+
# assert smi == "".join(tokens[:])
|
| 914 |
+
# except:
|
| 915 |
+
# print(smi)
|
| 916 |
+
# print("".join(tokens[:]))
|
| 917 |
+
if reverse:
|
| 918 |
+
return tokens[::-1]
|
| 919 |
+
return tokens
|
| 920 |
+
|
| 921 |
+
|
| 922 |
+
def init_weights(m: nn.Module):
|
| 923 |
+
if hasattr(m, "weight") and m.weight.dim() > 1:
|
| 924 |
+
nn.init.xavier_uniform_(m.weight.data)
|
| 925 |
+
|
| 926 |
+
|
| 927 |
+
def count_parameters(model: nn.Module):
|
| 928 |
+
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 929 |
+
|
| 930 |
+
|
| 931 |
+
def epoch_time(start_time, end_time):
|
| 932 |
+
elapsed_time = end_time - start_time
|
| 933 |
+
elapsed_mins = int(elapsed_time / 60)
|
| 934 |
+
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
|
| 935 |
+
return elapsed_mins, elapsed_secs
|
| 936 |
+
|
| 937 |
+
|
| 938 |
+
def initialize_model(folder_out: str,
|
| 939 |
+
data_source: str,
|
| 940 |
+
error_source: str,
|
| 941 |
+
device: torch.device,
|
| 942 |
+
threshold: int,
|
| 943 |
+
epochs: int,
|
| 944 |
+
layers: int = 3,
|
| 945 |
+
batch_size: int = 16,
|
| 946 |
+
invalid_type: str = "all",
|
| 947 |
+
num_errors: int = 1,
|
| 948 |
+
validation_step=False):
|
| 949 |
+
"""Create encoder decoder models for specified model (currently only translator) & type of invalid SMILES
|
| 950 |
+
|
| 951 |
+
param data: collection of invalid, valid SMILES pairs
|
| 952 |
+
param invalid_smiles_path: path to previously generated invalid SMILES
|
| 953 |
+
param invalid_type: type of errors introduced into invalid SMILES
|
| 954 |
+
|
| 955 |
+
return:
|
| 956 |
+
|
| 957 |
+
"""
|
| 958 |
+
|
| 959 |
+
# set fields
|
| 960 |
+
SRC = Field(
|
| 961 |
+
tokenize=lambda x: smi_tokenizer(x),
|
| 962 |
+
init_token="<sos>",
|
| 963 |
+
eos_token="<eos>",
|
| 964 |
+
batch_first=True,
|
| 965 |
+
)
|
| 966 |
+
TRG = Field(
|
| 967 |
+
tokenize=lambda x: smi_tokenizer(x, reverse=True),
|
| 968 |
+
init_token="<sos>",
|
| 969 |
+
eos_token="<eos>",
|
| 970 |
+
batch_first=True,
|
| 971 |
+
)
|
| 972 |
+
|
| 973 |
+
if validation_step:
|
| 974 |
+
train, val = TabularDataset.splits(
|
| 975 |
+
path=f'{folder_out}errors/split/',
|
| 976 |
+
train=f"{data_source}_{invalid_type}_{num_errors}_errors_train.csv",
|
| 977 |
+
validation=
|
| 978 |
+
f"{data_source}_{invalid_type}_{num_errors}_errors_dev.csv",
|
| 979 |
+
format="CSV",
|
| 980 |
+
skip_header=False,
|
| 981 |
+
fields={
|
| 982 |
+
"ERROR": ("src", SRC),
|
| 983 |
+
"STD_SMILES": ("trg", TRG)
|
| 984 |
+
},
|
| 985 |
+
)
|
| 986 |
+
SRC.build_vocab(train, val, max_size=1000)
|
| 987 |
+
TRG.build_vocab(train, val, max_size=1000)
|
| 988 |
+
else:
|
| 989 |
+
train = TabularDataset(
|
| 990 |
+
path=
|
| 991 |
+
f'{folder_out}{data_source}_{invalid_type}_{num_errors}_errors.csv',
|
| 992 |
+
format="CSV",
|
| 993 |
+
skip_header=False,
|
| 994 |
+
fields={
|
| 995 |
+
"ERROR": ("src", SRC),
|
| 996 |
+
"STD_SMILES": ("trg", TRG)
|
| 997 |
+
},
|
| 998 |
+
)
|
| 999 |
+
SRC.build_vocab(train, max_size=1000)
|
| 1000 |
+
TRG.build_vocab(train, max_size=1000)
|
| 1001 |
+
|
| 1002 |
+
drugex = TabularDataset(
|
| 1003 |
+
path=error_source,
|
| 1004 |
+
format="csv",
|
| 1005 |
+
skip_header=False,
|
| 1006 |
+
fields={
|
| 1007 |
+
"SMILES": ("src", SRC),
|
| 1008 |
+
"SMILES_TARGET": ("trg", TRG)
|
| 1009 |
+
},
|
| 1010 |
+
)
|
| 1011 |
+
|
| 1012 |
+
|
| 1013 |
+
#SRC.vocab = torch.load('vocab_src.pth')
|
| 1014 |
+
#TRG.vocab = torch.load('vocab_trg.pth')
|
| 1015 |
+
|
| 1016 |
+
# model parameters
|
| 1017 |
+
EPOCHS = epochs
|
| 1018 |
+
BATCH_SIZE = batch_size
|
| 1019 |
+
INPUT_DIM = len(SRC.vocab)
|
| 1020 |
+
OUTPUT_DIM = len(TRG.vocab)
|
| 1021 |
+
HID_DIM = 256
|
| 1022 |
+
ENC_LAYERS = layers
|
| 1023 |
+
DEC_LAYERS = layers
|
| 1024 |
+
ENC_HEADS = 8
|
| 1025 |
+
DEC_HEADS = 8
|
| 1026 |
+
ENC_PF_DIM = 512
|
| 1027 |
+
DEC_PF_DIM = 512
|
| 1028 |
+
ENC_DROPOUT = 0.1
|
| 1029 |
+
DEC_DROPOUT = 0.1
|
| 1030 |
+
SRC_PAD_IDX = SRC.vocab.stoi[SRC.pad_token]
|
| 1031 |
+
TRG_PAD_IDX = TRG.vocab.stoi[TRG.pad_token]
|
| 1032 |
+
# add 2 to length for start and stop tokens
|
| 1033 |
+
MAX_LENGTH = threshold + 2
|
| 1034 |
+
|
| 1035 |
+
# model name
|
| 1036 |
+
MODEL_OUT_FOLDER = f"{folder_out}"
|
| 1037 |
+
|
| 1038 |
+
MODEL_NAME = "transformer_%s_%s_%s_%s_%s" % (
|
| 1039 |
+
invalid_type, num_errors, data_source, BATCH_SIZE, layers)
|
| 1040 |
+
if not os.path.exists(MODEL_OUT_FOLDER):
|
| 1041 |
+
os.mkdir(MODEL_OUT_FOLDER)
|
| 1042 |
+
|
| 1043 |
+
out = os.path.join(MODEL_OUT_FOLDER, MODEL_NAME)
|
| 1044 |
+
|
| 1045 |
+
torch.save(SRC.vocab, f'{out}_vocab_src.pth')
|
| 1046 |
+
torch.save(TRG.vocab, f'{out}_vocab_trg.pth')
|
| 1047 |
+
|
| 1048 |
+
# iterator is a dataloader
|
| 1049 |
+
# iterator to pass to the same length and create batches in which the
|
| 1050 |
+
# amount of padding is minimized
|
| 1051 |
+
if validation_step:
|
| 1052 |
+
train_iter, val_iter = BucketIterator.splits(
|
| 1053 |
+
(train, val),
|
| 1054 |
+
batch_sizes=(BATCH_SIZE, 256),
|
| 1055 |
+
sort_within_batch=True,
|
| 1056 |
+
shuffle=True,
|
| 1057 |
+
# the BucketIterator needs to be told what function it should use to
|
| 1058 |
+
# group the data.
|
| 1059 |
+
sort_key=lambda x: len(x.src),
|
| 1060 |
+
device=device,
|
| 1061 |
+
)
|
| 1062 |
+
else:
|
| 1063 |
+
train_iter = BucketIterator(
|
| 1064 |
+
train,
|
| 1065 |
+
batch_size=BATCH_SIZE,
|
| 1066 |
+
sort_within_batch=True,
|
| 1067 |
+
shuffle=True,
|
| 1068 |
+
# the BucketIterator needs to be told what function it should use to
|
| 1069 |
+
# group the data.
|
| 1070 |
+
sort_key=lambda x: len(x.src),
|
| 1071 |
+
device=device,
|
| 1072 |
+
)
|
| 1073 |
+
val_iter = None
|
| 1074 |
+
|
| 1075 |
+
drugex_iter = Iterator(
|
| 1076 |
+
drugex,
|
| 1077 |
+
batch_size=64,
|
| 1078 |
+
device=device,
|
| 1079 |
+
sort=False,
|
| 1080 |
+
sort_within_batch=True,
|
| 1081 |
+
sort_key=lambda x: len(x.src),
|
| 1082 |
+
repeat=False,
|
| 1083 |
+
)
|
| 1084 |
+
|
| 1085 |
+
|
| 1086 |
+
# model initialization
|
| 1087 |
+
|
| 1088 |
+
enc = Encoder(
|
| 1089 |
+
INPUT_DIM,
|
| 1090 |
+
HID_DIM,
|
| 1091 |
+
ENC_LAYERS,
|
| 1092 |
+
ENC_HEADS,
|
| 1093 |
+
ENC_PF_DIM,
|
| 1094 |
+
ENC_DROPOUT,
|
| 1095 |
+
MAX_LENGTH,
|
| 1096 |
+
device,
|
| 1097 |
+
)
|
| 1098 |
+
dec = Decoder(
|
| 1099 |
+
OUTPUT_DIM,
|
| 1100 |
+
HID_DIM,
|
| 1101 |
+
DEC_LAYERS,
|
| 1102 |
+
DEC_HEADS,
|
| 1103 |
+
DEC_PF_DIM,
|
| 1104 |
+
DEC_DROPOUT,
|
| 1105 |
+
MAX_LENGTH,
|
| 1106 |
+
device,
|
| 1107 |
+
)
|
| 1108 |
+
|
| 1109 |
+
model = Seq2Seq(
|
| 1110 |
+
enc,
|
| 1111 |
+
dec,
|
| 1112 |
+
SRC_PAD_IDX,
|
| 1113 |
+
TRG_PAD_IDX,
|
| 1114 |
+
device,
|
| 1115 |
+
train_iter,
|
| 1116 |
+
out=out,
|
| 1117 |
+
loader_valid=val_iter,
|
| 1118 |
+
loader_drugex=drugex_iter,
|
| 1119 |
+
epochs=EPOCHS,
|
| 1120 |
+
TRG=TRG,
|
| 1121 |
+
SRC=SRC,
|
| 1122 |
+
).to(device)
|
| 1123 |
+
|
| 1124 |
+
|
| 1125 |
+
|
| 1126 |
+
|
| 1127 |
+
return model, out, SRC
|
| 1128 |
+
|
| 1129 |
+
|
| 1130 |
+
def train_model(model, out, assess):
|
| 1131 |
+
"""Apply given weights (& assess performance or train further) or start training new model
|
| 1132 |
+
|
| 1133 |
+
Args:
|
| 1134 |
+
model: initialized model
|
| 1135 |
+
out: .pkg file with model parameters
|
| 1136 |
+
asses: bool
|
| 1137 |
+
|
| 1138 |
+
Returns:
|
| 1139 |
+
model with (new) weights
|
| 1140 |
+
"""
|
| 1141 |
+
|
| 1142 |
+
if os.path.exists(f"{out}.pkg") and assess:
|
| 1143 |
+
|
| 1144 |
+
|
| 1145 |
+
model.load_state_dict(torch.load(f=out + ".pkg"))
|
| 1146 |
+
(
|
| 1147 |
+
valids,
|
| 1148 |
+
loss_valid,
|
| 1149 |
+
valids_de,
|
| 1150 |
+
df_output,
|
| 1151 |
+
df_output_de,
|
| 1152 |
+
right_molecules,
|
| 1153 |
+
complexity,
|
| 1154 |
+
unchanged,
|
| 1155 |
+
unchanged_de,
|
| 1156 |
+
) = model.evaluate(True)
|
| 1157 |
+
|
| 1158 |
+
|
| 1159 |
+
# log = open('unchanged.log', 'a')
|
| 1160 |
+
# info = f'type: comb unchanged: {unchan:.4g} unchanged_drugex: {unchan_de:.4g}'
|
| 1161 |
+
# print(info, file=log, flush = True)
|
| 1162 |
+
# print(valids_de)
|
| 1163 |
+
# print(unchanged_de)
|
| 1164 |
+
|
| 1165 |
+
# print(unchan)
|
| 1166 |
+
# print(unchan_de)
|
| 1167 |
+
# df_output_de.to_csv(f'{out}_de_new.csv', index = False)
|
| 1168 |
+
|
| 1169 |
+
# error_de = 1 - valids_de / len(drugex_iter.dataset)
|
| 1170 |
+
# print(error_de)
|
| 1171 |
+
# df_output.to_csv(f'{out}_par.csv', index = False)
|
| 1172 |
+
|
| 1173 |
+
elif os.path.exists(f"{out}.pkg"):
|
| 1174 |
+
|
| 1175 |
+
# starts from the model after the last epoch, not the best epoch
|
| 1176 |
+
model.load_state_dict(torch.load(f=out + "_last.pkg"))
|
| 1177 |
+
# need to change how log file names epochs
|
| 1178 |
+
model.train_model()
|
| 1179 |
+
else:
|
| 1180 |
+
|
| 1181 |
+
model = model.apply(init_weights)
|
| 1182 |
+
model.train_model()
|
| 1183 |
+
|
| 1184 |
+
return model
|
| 1185 |
+
|
| 1186 |
+
|
| 1187 |
+
def correct_SMILES(model, out, error_source, device, SRC):
|
| 1188 |
+
"""Model that is given corrects SMILES and return number of correct ouputs and dataframe containing all outputs
|
| 1189 |
+
Args:
|
| 1190 |
+
model: initialized model
|
| 1191 |
+
out: .pkg file with model parameters
|
| 1192 |
+
asses: bool
|
| 1193 |
+
|
| 1194 |
+
Returns:
|
| 1195 |
+
valids: number of fixed outputs
|
| 1196 |
+
df_output: dataframe containing output (either correct or incorrect) & original input
|
| 1197 |
+
"""
|
| 1198 |
+
## account for tokens that are not yet in SRC without changing existing SRC token embeddings
|
| 1199 |
+
errors = TabularDataset(
|
| 1200 |
+
path=error_source,
|
| 1201 |
+
format="csv",
|
| 1202 |
+
skip_header=False,
|
| 1203 |
+
fields={"SMILES": ("src", SRC)},
|
| 1204 |
+
)
|
| 1205 |
+
|
| 1206 |
+
errors_loader = Iterator(
|
| 1207 |
+
errors,
|
| 1208 |
+
batch_size=64,
|
| 1209 |
+
device=device,
|
| 1210 |
+
sort=False,
|
| 1211 |
+
sort_within_batch=True,
|
| 1212 |
+
sort_key=lambda x: len(x.src),
|
| 1213 |
+
repeat=False,
|
| 1214 |
+
)
|
| 1215 |
+
model.load_state_dict(torch.load(f=out + ".pkg",map_location=torch.device('cpu')))
|
| 1216 |
+
# add option to use different iterator maybe?
|
| 1217 |
+
|
| 1218 |
+
valids, df_output = model.translate(errors_loader)
|
| 1219 |
+
#df_output.to_csv(f"{error_source}_fixed.csv", index=False)
|
| 1220 |
+
|
| 1221 |
+
|
| 1222 |
+
return valids, df_output
|
| 1223 |
+
|
| 1224 |
+
|
| 1225 |
+
|
| 1226 |
+
class smi_correct(object):
|
| 1227 |
+
def __init__(self, model_name, trans_file_path):
|
| 1228 |
+
# set random seed, used for error generation & initiation transformer
|
| 1229 |
+
|
| 1230 |
+
self.SEED = 42
|
| 1231 |
+
random.seed(self.SEED)
|
| 1232 |
+
self.model_name = model_name
|
| 1233 |
+
self.folder_out = "DrugGEN/data/"
|
| 1234 |
+
|
| 1235 |
+
self.trans_file_path = trans_file_path
|
| 1236 |
+
|
| 1237 |
+
if not os.path.exists(self.folder_out):
|
| 1238 |
+
os.makedirs(self.folder_out)
|
| 1239 |
+
|
| 1240 |
+
self.invalid_type = 'multiple'
|
| 1241 |
+
self.num_errors = 12
|
| 1242 |
+
self.threshold = 200
|
| 1243 |
+
self.data_source = f"PAPYRUS_{self.threshold}"
|
| 1244 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 1245 |
+
self.initialize_source = 'DrugGEN/data/papyrus_rnn_S.csv' # change this path
|
| 1246 |
+
|
| 1247 |
+
def standardization_pipeline(self, smile):
|
| 1248 |
+
desalter = MolStandardize.fragment.LargestFragmentChooser()
|
| 1249 |
+
std_smile = None
|
| 1250 |
+
if not isinstance(smile, str): return None
|
| 1251 |
+
m = Chem.MolFromSmiles(smile)
|
| 1252 |
+
# skips smiles for which no mol file could be generated
|
| 1253 |
+
if m is not None:
|
| 1254 |
+
# standardizes
|
| 1255 |
+
std_m = standardizer.standardize_mol(m)
|
| 1256 |
+
# strips salts
|
| 1257 |
+
std_m_p, exclude = standardizer.get_parent_mol(std_m)
|
| 1258 |
+
if not exclude:
|
| 1259 |
+
# choose largest fragment for rare cases where chembl structure
|
| 1260 |
+
# pipeline leaves 2 fragments
|
| 1261 |
+
std_m_p_d = desalter.choose(std_m_p)
|
| 1262 |
+
std_smile = Chem.MolToSmiles(std_m_p_d)
|
| 1263 |
+
return std_smile
|
| 1264 |
+
|
| 1265 |
+
def remove_smiles_duplicates(self, dataframe: pd.DataFrame,
|
| 1266 |
+
subset: str) -> pd.DataFrame:
|
| 1267 |
+
return dataframe.drop_duplicates(subset=subset)
|
| 1268 |
+
|
| 1269 |
+
def correct(self, smi):
|
| 1270 |
+
|
| 1271 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 1272 |
+
|
| 1273 |
+
model, out, SRC = initialize_model(self.folder_out,
|
| 1274 |
+
self.data_source,
|
| 1275 |
+
error_source=self.initialize_source,
|
| 1276 |
+
device=device,
|
| 1277 |
+
threshold=self.threshold,
|
| 1278 |
+
epochs=30,
|
| 1279 |
+
layers=3,
|
| 1280 |
+
batch_size=16,
|
| 1281 |
+
invalid_type=self.invalid_type,
|
| 1282 |
+
num_errors=self.num_errors)
|
| 1283 |
+
|
| 1284 |
+
valids, df_output = correct_SMILES(model, out, smi, device,
|
| 1285 |
+
SRC)
|
| 1286 |
+
|
| 1287 |
+
df_output["SMILES"] = df_output.apply(lambda row: self.standardization_pipeline(row["CORRECT"]), axis=1)
|
| 1288 |
+
|
| 1289 |
+
df_output = self.remove_smiles_duplicates(df_output, subset="SMILES").drop(columns=["CORRECT", "INCORRECT", "ORIGINAL"]).dropna()
|
| 1290 |
+
|
| 1291 |
+
return df_output
|
utils.py
CHANGED
|
@@ -42,7 +42,15 @@ class Metrics(object):
|
|
| 42 |
|
| 43 |
@staticmethod
|
| 44 |
def max_component(data, max_len):
|
|
|
|
|
|
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
return ((np.array(list(map(Metrics.mol_length, data)), dtype=np.float32)/max_len).mean())
|
| 47 |
|
| 48 |
@staticmethod
|
|
@@ -347,7 +355,7 @@ def canonic_smiles(smiles_or_mol):
|
|
| 347 |
if mol is None:
|
| 348 |
return None
|
| 349 |
return Chem.MolToSmiles(mol)
|
| 350 |
-
def fraction_unique(gen, k=None, n_jobs=1, check_validity=
|
| 351 |
"""
|
| 352 |
Computes a number of unique molecules
|
| 353 |
Parameters:
|
|
@@ -363,11 +371,13 @@ def fraction_unique(gen, k=None, n_jobs=1, check_validity=False):
|
|
| 363 |
"gen contains only {} molecules".format(len(gen))
|
| 364 |
)
|
| 365 |
gen = gen[:k]
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
|
|
|
|
|
|
| 371 |
|
| 372 |
def novelty(gen, train, n_jobs=1):
|
| 373 |
gen_smiles = mapper(n_jobs)(canonic_smiles, gen)
|
|
@@ -375,7 +385,8 @@ def novelty(gen, train, n_jobs=1):
|
|
| 375 |
train_set = set(train)
|
| 376 |
return 0 if len(gen_smiles_set) == 0 else len(gen_smiles_set - train_set) / len(gen_smiles_set)
|
| 377 |
|
| 378 |
-
|
|
|
|
| 379 |
|
| 380 |
def average_agg_tanimoto(stock_vecs, gen_vecs,
|
| 381 |
batch_size=5000, agg='max',
|
|
|
|
| 42 |
|
| 43 |
@staticmethod
|
| 44 |
def max_component(data, max_len):
|
| 45 |
+
|
| 46 |
+
# There will be a name change for this function to better reflect what it does
|
| 47 |
|
| 48 |
+
"""Returns the average length of the molecules in the dataset normalized by the maximum length.
|
| 49 |
+
|
| 50 |
+
Returns:
|
| 51 |
+
array: normalized average length of the molecules in the dataset
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
return ((np.array(list(map(Metrics.mol_length, data)), dtype=np.float32)/max_len).mean())
|
| 55 |
|
| 56 |
@staticmethod
|
|
|
|
| 355 |
if mol is None:
|
| 356 |
return None
|
| 357 |
return Chem.MolToSmiles(mol)
|
| 358 |
+
def fraction_unique(gen, k=None, n_jobs=1, check_validity=True):
|
| 359 |
"""
|
| 360 |
Computes a number of unique molecules
|
| 361 |
Parameters:
|
|
|
|
| 371 |
"gen contains only {} molecules".format(len(gen))
|
| 372 |
)
|
| 373 |
gen = gen[:k]
|
| 374 |
+
if check_validity:
|
| 375 |
+
|
| 376 |
+
canonic = list(mapper(n_jobs)(canonic_smiles, gen))
|
| 377 |
+
canonic = [i for i in canonic if i is not None]
|
| 378 |
+
set_cannonic = set(canonic)
|
| 379 |
+
#raise ValueError("Invalid molecule passed to unique@k")
|
| 380 |
+
return 0 if len(canonic) == 0 else len(set_cannonic) / len(canonic)
|
| 381 |
|
| 382 |
def novelty(gen, train, n_jobs=1):
|
| 383 |
gen_smiles = mapper(n_jobs)(canonic_smiles, gen)
|
|
|
|
| 385 |
train_set = set(train)
|
| 386 |
return 0 if len(gen_smiles_set) == 0 else len(gen_smiles_set - train_set) / len(gen_smiles_set)
|
| 387 |
|
| 388 |
+
def internal_diversity(gen):
|
| 389 |
+
return 1 - average_agg_tanimoto(gen, gen, agg="mean")
|
| 390 |
|
| 391 |
def average_agg_tanimoto(stock_vecs, gen_vecs,
|
| 392 |
batch_size=5000, agg='max',
|