# 🔹 model.py (Complete Animation Engine with AI Integration) import cv2 import numpy as np import torch import moviepy.editor as mp from transformers import pipeline from PIL import Image, ImageDraw import os class AnimationGenerator: def __init__(self): self.pose_analyzer = pipeline("text2text-generation", model="google/pegasus-x-base") self.character_db = {} self.resolution = (720, 480) self.fps = 24 def create_animation(self, script, character, bg, camera_effect, sound, tmp_dir): # Process script into animation sequences keyframes = self.parse_script(script, character) # Generate frames with persistent character frames = self.render_frames(keyframes, character, bg) # Apply cinematic effects frames = self.apply_camera_effects(frames, camera_effect) # Save and add audio video_path = os.path.join(tmp_dir, "animation.mp4") self.save_video(frames, video_path) return self.add_audio_track(video_path, sound, tmp_dir) def parse_script(self, script, character): # AI-based script analysis prompt = f"Convert this story into animation keyframes: {script}" analysis = self.pose_analyzer(prompt, max_length=400) return self.extract_motion_data(analysis[0]['generated_text'], character) def extract_motion_data(self, text, character): # Implement actual NLP parsing here return [{ 'position': (100 + i*20, 200), 'pose': 'walking' if i%2 ==0 else 'standing', 'expression': 'neutral' } for i in range(24)] # 1 second base def render_frames(self, keyframes, character, bg): # Character memory system if character not in self.character_db: self.character_db[character] = { 'color': (0, 0, 0), 'scale': 1.0, 'last_position': (100, 200) } frames = [] for frame_data in keyframes: canvas = self.create_background(bg) self.draw_character(canvas, frame_data, character) frames.append(cv2.cvtColor(np.array(canvas), cv2.COLOR_RGB2BGR)) return frames def create_background(self, bg_name): # Add actual background images if bg_name == "Dark Forest": return Image.new('RGB', self.resolution, (34, 139, 34)) elif bg_name == "Haunted House": return Image.new('RGB', self.resolution, (28, 28, 28)) return Image.new('RGB', self.resolution, (255, 255, 255)) def draw_character(self, canvas, data, character): draw = ImageDraw.Draw(canvas) # Main character drawing logic x, y = data['position'] # Head draw.ellipse((x-15, y-40, x+15, y-10), outline=(0,0,0), width=2) # Body draw.line((x, y, x, y+60), fill=(0,0,0), width=3) # Arms draw.line((x-30, y+30, x+30, y+30), fill=(0,0,0), width=3) # Legs draw.line((x-20, y+90, x, y+60), fill=(0,0,0), width=3) draw.line((x+20, y+90, x, y+60), fill=(0,0,0), width=3) def apply_camera_effects(self, frames, effect): # Professional camera effects if effect == "Dynamic Shake": return [self.apply_shake(frame) for frame in frames] elif effect == "Cinematic Zoom": return self.create_zoom_effect(frames) return frames def apply_shake(self, frame): dx, dy = np.random.randint(-7,7), np.random.randint(-5,5) M = np.float32([[1,0,dx], [0,1,dy]]) return cv2.warpAffine(frame, M, self.resolution) def create_zoom_effect(self, frames): zoomed = [] for i, frame in enumerate(frames): scale = 1.0 + (i/len(frames))*0.3 new_frame = cv2.resize(frame, None, fx=scale, fy=scale) y_start = int((new_frame.shape[0] - self.resolution[1])/2) x_start = int((new_frame.shape[1] - self.resolution[0])/2) zoomed.append(new_frame[y_start:y_start+self.resolution[1], x_start:x_start+self.resolution[0]]) return zoomed def save_video(self, frames, path): clip = mp.ImageSequenceClip(frames, fps=self.fps) clip.write_videofile(path, codec='libx264', audio=False) def add_audio_track(self, video_path, sound, tmp_dir): # Implement actual audio mixing final_path = os.path.join(tmp_dir, "final.mp4") video = mp.VideoFileClip(video_path) video.write_videofile(final_path) return final_path