|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import re |
|
import tempfile |
|
import textwrap |
|
from pathlib import Path |
|
from typing import List, Dict, Optional, Any |
|
|
|
import gradio as gr |
|
from PyPDF2 import PdfReader |
|
from pydub import AudioSegment |
|
from pydub.exceptions import CouldntDecodeError |
|
|
|
|
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
try: |
|
import google.generativeai as genai |
|
except ImportError: |
|
raise ImportError("Please install Google Generative AI SDK: pip install google-generativeai") |
|
|
|
|
|
|
|
|
|
hf_tts_client: Optional[InferenceClient] = None |
|
hf_token = os.getenv("HF_TOKEN") |
|
if hf_token: |
|
hf_tts_client = InferenceClient(token=hf_token) |
|
else: |
|
print("WARNING: HF_TOKEN secret not found. Hugging Face TTS will not be available.") |
|
|
|
|
|
|
|
|
|
LANG_INFO: Dict[str, Dict[str, str]] = { |
|
"en": {"name": "English", "tts_model": "facebook/mms-tts-eng"}, |
|
"bn": {"name": "Bangla", "tts_model": "facebook/mms-tts-ben"}, |
|
"zh": {"name": "Chinese", "tts_model": "facebook/mms-tts-zho"}, |
|
"ur": {"name": "Urdu", "tts_model": "facebook/mms-tts-urd"}, |
|
"ne": {"name": "Nepali", "tts_model": "facebook/mms-tts-npi"}, |
|
} |
|
LANG_CODE_BY_NAME = {info["name"]: code for code, info in LANG_INFO.items()} |
|
|
|
|
|
|
|
|
|
PROMPT_TEMPLATE = textwrap.dedent( |
|
""" |
|
You are producing a lively two-host educational podcast in {lang_name}. |
|
Summarize the following lecture content into a dialogue of **approximately 300 words**. |
|
Make it engaging: hosts ask questions, clarify ideas with analogies, and |
|
wrap up with a concise recap. Preserve technical accuracy. Use Markdown for host names (e.g., **Host 1:**). |
|
|
|
### Lecture Content |
|
{content} |
|
""" |
|
) |
|
|
|
|
|
def extract_pdf_text(pdf_path: str) -> str: |
|
try: |
|
reader = PdfReader(pdf_path) |
|
return "\n".join(page.extract_text() or "" for page in reader.pages) |
|
except Exception as e: |
|
raise gr.Error(f"Failed to process PDF: {e}") |
|
|
|
TOKEN_LIMIT = 8000 |
|
def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str: |
|
words = text.split() |
|
if len(words) > limit: |
|
gr.Warning(f"Input text was truncated from {len(words)} to {limit} words to fit LLM context window.") |
|
return " ".join(words[:limit]) |
|
return text |
|
|
|
|
|
|
|
|
|
CHUNK_CHAR_LIMIT_HF = 280 |
|
def _split_to_chunks_hf(text: str, limit: int = CHUNK_CHAR_LIMIT_HF) -> List[str]: |
|
sentences_raw = re.split(r"(?<=[.!?])\s+", text.strip()) |
|
sentences = [s.strip() for s in sentences_raw if s.strip()] |
|
chunks, current_chunk = [], "" |
|
for sent in sentences: |
|
if current_chunk and (len(current_chunk) + len(sent) + 1 > limit): |
|
chunks.append(current_chunk) |
|
current_chunk = sent |
|
else: |
|
current_chunk += (" " + sent) if current_chunk else sent |
|
if current_chunk: |
|
chunks.append(current_chunk) |
|
return [chunk for chunk in chunks if chunk.strip()] |
|
|
|
def synthesize_speech_hf( |
|
text: str, |
|
hf_model_id: str, |
|
lang_tmpdir: Path, |
|
tts_client: InferenceClient |
|
) -> Path: |
|
chunks = _split_to_chunks_hf(text) |
|
if not chunks: |
|
raise ValueError("Text resulted in no speakable chunks after splitting.") |
|
|
|
audio_segments: List[AudioSegment] = [] |
|
for idx, chunk in enumerate(chunks): |
|
gr.Info(f"Synthesizing audio for chunk {idx + 1}/{len(chunks)} with HF TTS ({hf_model_id})...") |
|
try: |
|
audio_bytes = tts_client.text_to_speech(chunk, model=hf_model_id) |
|
except Exception as e: |
|
raise RuntimeError(f"HF TTS client error for chunk {idx+1}: {e}") from e |
|
|
|
part_path = lang_tmpdir / f"part_{idx}.flac" |
|
part_path.write_bytes(audio_bytes) |
|
try: |
|
segment = AudioSegment.from_file(part_path, format="flac") |
|
audio_segments.append(segment) |
|
except CouldntDecodeError as e: |
|
raise RuntimeError(f"Failed to decode audio chunk {idx+1}: {e}") from e |
|
|
|
combined_audio = sum(audio_segments, AudioSegment.empty()) |
|
final_path = lang_tmpdir / "podcast_audio.flac" |
|
combined_audio.export(final_path, format="flac") |
|
return final_path |
|
|
|
|
|
|
|
|
|
def generate_podcast( |
|
gemini_api_key_from_ui: Optional[str], |
|
pdf_file_obj: Optional[gr.File], |
|
selected_lang_names: List[str] |
|
) -> List[Optional[Any]]: |
|
|
|
if not gemini_api_key_from_ui: |
|
raise gr.Error("Please enter your Google AI Studio API Key for Gemini.") |
|
if not pdf_file_obj: |
|
raise gr.Error("Please upload a PDF file.") |
|
if not selected_lang_names: |
|
raise gr.Error("Please select at least one language.") |
|
|
|
try: |
|
genai.configure(api_key=gemini_api_key_from_ui) |
|
except Exception as e: |
|
raise gr.Error(f"Failed to configure Gemini API: {e}") |
|
|
|
if not hf_tts_client: |
|
gr.Warning("HF TTS unavailable; only script will be generated.") |
|
|
|
selected_codes = [LANG_CODE_BY_NAME[name] for name in selected_lang_names] |
|
results_data = { |
|
code: {"audio": None, "script_md": None, "script_file": None} |
|
for code in LANG_INFO.keys() |
|
} |
|
|
|
with tempfile.TemporaryDirectory() as td: |
|
tmpdir_base = Path(td) |
|
lecture_raw = extract_pdf_text(pdf_file_obj.name) |
|
lecture_text = truncate_text(lecture_raw) |
|
if not lecture_text.strip(): |
|
raise gr.Error("Extracted PDF text is empty.") |
|
|
|
gemini_model = genai.GenerativeModel('gemini-1.5-flash-latest') |
|
|
|
for code in selected_codes: |
|
info = LANG_INFO[code] |
|
lang_name = info["name"] |
|
hf_tts_model_id = info["tts_model"] |
|
|
|
lang_tmpdir = tmpdir_base / code |
|
lang_tmpdir.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
prompt = PROMPT_TEMPLATE.format(lang_name=lang_name, content=lecture_text) |
|
try: |
|
resp = gemini_model.generate_content(prompt) |
|
dialogue = resp.text or "" |
|
except Exception as e: |
|
raise gr.Error(f"Gemini error for {lang_name}: {e}") |
|
|
|
if dialogue: |
|
|
|
results_data[code]["script_md"] = dialogue |
|
|
|
script_path = lang_tmpdir / f"podcast_script_{code}.txt" |
|
script_path.write_text(dialogue, encoding="utf-8") |
|
results_data[code]["script_file"] = str(script_path) |
|
|
|
|
|
if hf_tts_client: |
|
try: |
|
audio_path = synthesize_speech_hf(dialogue, hf_tts_model_id, lang_tmpdir, hf_tts_client) |
|
results_data[code]["audio"] = str(audio_path) |
|
except Exception as e: |
|
gr.Error(f"TTS error for {lang_name}: {e}") |
|
|
|
|
|
final_outputs: List[Optional[Any]] = [] |
|
for code in LANG_INFO.keys(): |
|
out = results_data[code] |
|
final_outputs.extend([ out["audio"], out["script_md"], out["script_file"] ]) |
|
|
|
return final_outputs |
|
|
|
|
|
|
|
|
|
language_names_ordered = [info["name"] for info in LANG_INFO.values()] |
|
|
|
inputs = [ |
|
gr.Textbox(label="Google Gemini API Key", type="password", placeholder="Paste your key here"), |
|
gr.File(label="Upload Lecture PDF", file_types=[".pdf"]), |
|
gr.CheckboxGroup(choices=language_names_ordered, value=["English"], label="Select language(s)"), |
|
] |
|
|
|
outputs = [] |
|
for code in LANG_INFO.keys(): |
|
lang_name = LANG_INFO[code]["name"] |
|
outputs.append(gr.Audio(label=f"{lang_name} Podcast", type="filepath")) |
|
outputs.append(gr.Markdown(label=f"{lang_name} Script")) |
|
outputs.append(gr.File(label=f"Download {lang_name} Script (.txt)", type="filepath")) |
|
|
|
iface = gr.Interface( |
|
fn=generate_podcast, |
|
inputs=inputs, |
|
outputs=outputs, |
|
title="Lecture → Podcast & Script", |
|
description=( |
|
"Enter your Gemini API Key, upload a lecture PDF, choose language(s), " |
|
"and get a two-host podcast (audio) plus the Markdown script & downloadable text." |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
if __name__ == "__main__": |
|
if not os.getenv("HF_TOKEN"): |
|
print("Reminder: set HF_TOKEN in Secrets for TTS to work.") |
|
iface.launch() |
|
|