PodCastIt / app.py
HaiderAUT's picture
Update app.py
50d2a40 verified
raw
history blame
4.93 kB
# =============================================================
# Hugging Face Space – Lecture → Multilingual Podcast Generator
# =============================================================
# * **Text generation** – SmolAgents `HfApiModel` running the remote
# Qwen/Qwen2.5‑Coder‑32B‑Instruct model.
# * **Speech synthesis** – `huggingface_hub.InferenceClient.text_to_speech`
# (serverless) with open models per language – no heavy local
# downloads.
# * Outputs five FLAC files (English, Bangla, Chinese, Urdu, Nepali).
# -----------------------------------------------------------------
import os
import tempfile
import textwrap
from pathlib import Path
from typing import List, Dict
import gradio as gr
from huggingface_hub import InferenceClient
from PyPDF2 import PdfReader
from smolagents import HfApiModel
# ------------------------------------------------------------------
# LLM: Qwen 32‑B via SmolAgents
# ------------------------------------------------------------------
llm = HfApiModel(
model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
max_tokens=2096,
temperature=0.5,
custom_role_conversions=None,
)
# ------------------------------------------------------------------
# HF Inference API client (reads HF_TOKEN secret if set)
# ------------------------------------------------------------------
client = InferenceClient(token=os.getenv("HF_TOKEN", None))
# ------------------------------------------------------------------
# Language metadata and matching TTS model IDs
# ------------------------------------------------------------------
LANG_INFO: Dict[str, Dict[str, str]] = {
"en": {"name": "English", "tts_model": "facebook/mms-tts-eng"},
"bn": {"name": "Bangla", "tts_model": "facebook/mms-tts-ben"},
# MMS lacks mainstream Mandarin — fallback to an open Chinese TTS
"zh": {"name": "Chinese", "tts_model": "myshell-ai/MeloTTS-Chinese"},
"ur": {"name": "Urdu", "tts_model": "facebook/mms-tts-urd-script_arabic"},
"ne": {"name": "Nepali", "tts_model": "facebook/mms-tts-npi"},
}
PROMPT_TEMPLATE = textwrap.dedent(
"""
You are producing a lively two‑host educational podcast in {lang_name}.
Summarize the following lecture content into a dialogue of ≈1200 words.
Make it engaging: hosts ask questions, clarify ideas with analogies, and
wrap up with a concise recap. Preserve technical accuracy.
### Lecture Content
{content}
"""
)
# ------------------------------------------------------------------
# Helpers: extract and truncate PDF text
# ------------------------------------------------------------------
def extract_pdf_text(pdf_path: str) -> str:
reader = PdfReader(pdf_path)
return "\n".join(page.extract_text() or "" for page in reader.pages)
TOKEN_LIMIT = 6000 # rough word‑level cap before hitting context limit
def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str:
words = text.split()
return " ".join(words[:limit])
# ------------------------------------------------------------------
# Main pipeline
# ------------------------------------------------------------------
def generate_podcast(pdf: gr.File) -> List[gr.Audio]:
"""Generate multilingual podcast from a lecture PDF."""
with tempfile.TemporaryDirectory() as tmpdir:
raw_text = extract_pdf_text(pdf.name)
lecture_text = truncate_text(raw_text)
outputs: List[tuple] = []
for code, info in LANG_INFO.items():
# 1️⃣ Draft dialogue in the target language
prompt = PROMPT_TEMPLATE.format(lang_name=info["name"], content=lecture_text)
dialogue: str = llm(prompt)
# 2️⃣ Synthesize speech via HF Inference API
audio_bytes: bytes = client.text_to_speech(dialogue, model=info["tts_model"])
flac_path = Path(tmpdir) / f"podcast_{code}.flac"
flac_path.write_bytes(audio_bytes)
outputs.append((str(flac_path), None)) # (filepath, label)
return outputs
# ------------------------------------------------------------------
# Gradio interface
# ------------------------------------------------------------------
audio_components = [
gr.Audio(label=f"{info['name']} Podcast", type="filepath")
for info in LANG_INFO.values()
]
iface = gr.Interface(
fn=generate_podcast,
inputs=gr.File(label="Upload Lecture PDF", file_types=[".pdf"]),
outputs=audio_components,
title="Lecture → Multilingual Podcast Generator",
description=(
"Upload a lecture PDF and receive a two‑host audio podcast in five "
"languages (English, Bangla, Chinese, Urdu, Nepali). Dialogue is "
"crafted by Qwen‑32B; speech is synthesized on‑the‑fly using the "
"Hugging Face Inference API — no heavy downloads or GPUs required."
),
)
if __name__ == "__main__":
iface.launch()