PodCastIt / app.py
HaiderAUT's picture
Update app.py
c172b12 verified
raw
history blame
5.61 kB
# =============================================================
# Hugging Face Space – Lecture → Podcast Generator (User‑selectable Languages)
# =============================================================
# * **Text generation** – SmolAgents `HfApiModel` (Qwen/Qwen2.5‑Coder‑32B‑Instruct).
# * **Speech synthesis** – `huggingface_hub.InferenceClient.text_to_speech`.
# * Users pick which languages to generate (English, Bangla, Chinese,
# Urdu, Nepali). Unselected languages are skipped.
# -----------------------------------------------------------------
import os
import tempfile
import textwrap
from pathlib import Path
from typing import List, Dict, Tuple, Optional
import gradio as gr
from huggingface_hub import InferenceClient
from PyPDF2 import PdfReader
from smolagents import HfApiModel
# ------------------------------------------------------------------
# LLM: Qwen 32‑B via SmolAgents
# ------------------------------------------------------------------
llm = HfApiModel(
model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
max_tokens=2096,
temperature=0.5,
custom_role_conversions=None,
)
# ------------------------------------------------------------------
# HF Inference API client (reads HF_TOKEN secret if set)
# ------------------------------------------------------------------
client = InferenceClient(token=os.getenv("HF_TOKEN", None))
# ------------------------------------------------------------------
# Language metadata and matching TTS model IDs
# ------------------------------------------------------------------
LANG_INFO: Dict[str, Dict[str, str]] = {
"en": {"name": "English", "tts_model": "facebook/mms-tts-eng"},
"bn": {"name": "Bangla", "tts_model": "facebook/mms-tts-ben"},
"zh": {"name": "Chinese", "tts_model": "myshell-ai/MeloTTS-Chinese"},
"ur": {"name": "Urdu", "tts_model": "facebook/mms-tts-urd-script_arabic"},
"ne": {"name": "Nepali", "tts_model": "facebook/mms-tts-npi"},
}
# Helper map: name ➜ code
LANG_CODE_BY_NAME = {info["name"]: code for code, info in LANG_INFO.items()}
PROMPT_TEMPLATE = textwrap.dedent(
"""
You are producing a lively two‑host educational podcast in {lang_name}.
Summarize the following lecture content into a dialogue of ≈1200 words.
Make it engaging: hosts ask questions, clarify ideas with analogies, and
wrap up with a concise recap. Preserve technical accuracy.
### Lecture Content
{content}
"""
)
# ------------------------------------------------------------------
# Helpers: extract and truncate PDF text
# ------------------------------------------------------------------
def extract_pdf_text(pdf_path: str) -> str:
reader = PdfReader(pdf_path)
return "\n".join(page.extract_text() or "" for page in reader.pages)
TOKEN_LIMIT = 6000 # rough word‑level cap before hitting context limit
def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str:
words = text.split()
return " ".join(words[:limit])
# ------------------------------------------------------------------
# Main pipeline
# ------------------------------------------------------------------
def generate_podcast(pdf: gr.File, selected_lang_names: List[str]) -> List[Optional[Tuple[str, None]]]:
"""Generate podcast audio files for chosen languages. Returns a list
aligned with LANG_INFO order; unselected languages yield None."""
# Ensure at least one language selected
if not selected_lang_names:
return [None] * len(LANG_INFO)
selected_codes = [LANG_CODE_BY_NAME[name] for name in selected_lang_names]
with tempfile.TemporaryDirectory() as tmpdir:
raw_text = extract_pdf_text(pdf.name)
lecture_text = truncate_text(raw_text)
outputs: List[Optional[Tuple[str, None]]] = []
for code, info in LANG_INFO.items():
if code not in selected_codes:
outputs.append(None)
continue
# 1️⃣ Draft dialogue in the target language
prompt = PROMPT_TEMPLATE.format(lang_name=info["name"], content=lecture_text)
dialogue: str = llm(prompt)
# 2️⃣ Synthesize speech via HF Inference API
audio_bytes: bytes = client.text_to_speech(dialogue, model=info["tts_model"])
flac_path = Path(tmpdir) / f"podcast_{code}.flac"
flac_path.write_bytes(audio_bytes)
outputs.append((str(flac_path), None)) # (filepath, label)
return outputs
# ------------------------------------------------------------------
# Gradio interface
# ------------------------------------------------------------------
language_choices = [info["name"] for info in LANG_INFO.values()]
inputs = [
gr.File(label="Upload Lecture PDF", file_types=[".pdf"]),
gr.CheckboxGroup(
choices=language_choices,
value=["English"],
label="Select podcast language(s) to generate",
),
]
audio_components = [
gr.Audio(label=f"{info['name']} Podcast", type="filepath") for info in LANG_INFO.values()
]
iface = gr.Interface(
fn=generate_podcast,
inputs=inputs,
outputs=audio_components,
title="Lecture → Podcast Generator (Choose Languages)",
description=(
"Upload a lecture PDF, choose your desired languages, and receive a "
"two‑host audio podcast. Dialogue is crafted by Qwen‑32B; speech is "
"synthesized on‑the‑fly using the Hugging Face Inference API — "
"no heavy downloads or GPUs required."
),
)
if __name__ == "__main__":
iface.launch()