Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
# =============================================================
|
2 |
-
# Hugging Face Space – Lecture → Podcast Generator (
|
3 |
# =============================================================
|
4 |
-
# • **Text generation** – Google Gemini API
|
5 |
-
# • **Speech synthesis** –
|
6 |
# -----------------------------------------------------------------
|
7 |
|
8 |
import os
|
@@ -17,32 +17,40 @@ from PyPDF2 import PdfReader
|
|
17 |
from pydub import AudioSegment
|
18 |
from pydub.exceptions import CouldntDecodeError
|
19 |
|
20 |
-
#
|
|
|
|
|
|
|
21 |
try:
|
22 |
import google.generativeai as genai
|
23 |
-
from google.cloud import texttospeech
|
24 |
except ImportError:
|
25 |
-
raise ImportError(
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# ------------------------------------------------------------------
|
31 |
-
# Language metadata for
|
32 |
-
# You might want to specify particular voices too (e.g., "en-US-Wavenet-D")
|
33 |
-
# For simplicity, we'll let Google pick a standard voice for the language code.
|
34 |
# ------------------------------------------------------------------
|
35 |
LANG_INFO: Dict[str, Dict[str, str]] = {
|
36 |
-
"en": {"name": "English", "
|
37 |
-
"bn": {"name": "Bangla", "
|
38 |
-
"zh": {"name": "Chinese
|
39 |
-
"ur": {"name": "Urdu", "
|
40 |
-
"ne": {"name": "Nepali", "
|
41 |
}
|
42 |
LANG_CODE_BY_NAME = {info["name"]: code for code, info in LANG_INFO.items()}
|
43 |
|
44 |
# ------------------------------------------------------------------
|
45 |
-
# Prompt template
|
46 |
# ------------------------------------------------------------------
|
47 |
PROMPT_TEMPLATE = textwrap.dedent(
|
48 |
"""
|
@@ -64,7 +72,7 @@ def extract_pdf_text(pdf_path: str) -> str:
|
|
64 |
except Exception as e:
|
65 |
raise gr.Error(f"Failed to process PDF: {e}")
|
66 |
|
67 |
-
TOKEN_LIMIT = 8000
|
68 |
|
69 |
def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str:
|
70 |
words = text.split()
|
@@ -74,12 +82,11 @@ def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str:
|
|
74 |
return text
|
75 |
|
76 |
# ------------------------------------------------------------------
|
77 |
-
# TTS helper
|
78 |
# ------------------------------------------------------------------
|
79 |
-
|
80 |
-
# Average 3 bytes/char for UTF-8, so 1500 chars is ~4500 bytes.
|
81 |
|
82 |
-
def
|
83 |
sentences_raw = re.split(r"(?<=[.!?])\s+", text.strip())
|
84 |
sentences = [s.strip() for s in sentences_raw if s.strip()]
|
85 |
if not sentences: return []
|
@@ -94,54 +101,45 @@ def _split_to_chunks(text: str, limit: int = CHUNK_CHAR_LIMIT) -> List[str]:
|
|
94 |
return [chunk for chunk in chunks if chunk.strip()]
|
95 |
|
96 |
|
97 |
-
def
|
98 |
-
text: str,
|
99 |
-
|
100 |
lang_tmpdir: Path,
|
101 |
-
tts_client:
|
102 |
) -> Path:
|
103 |
-
|
104 |
-
chunks = _split_to_chunks(text)
|
105 |
if not chunks:
|
106 |
raise ValueError("Text resulted in no speakable chunks after splitting.")
|
107 |
|
108 |
audio_segments: List[AudioSegment] = []
|
109 |
for idx, chunk in enumerate(chunks):
|
110 |
-
gr.Info(f"Synthesizing audio for chunk {idx + 1}/{len(chunks)} with
|
111 |
-
|
112 |
-
synthesis_input = texttospeech.SynthesisInput(text=chunk)
|
113 |
-
voice = texttospeech.VoiceSelectionParams(
|
114 |
-
language_code=google_lang_code,
|
115 |
-
# You can specify a voice name, e.g., "en-US-Wavenet-D"
|
116 |
-
# ssml_gender=texttospeech.SsmlVoiceGender.NEUTRAL # Optional
|
117 |
-
)
|
118 |
-
audio_config = texttospeech.AudioConfig(
|
119 |
-
audio_encoding=texttospeech.AudioEncoding.MP3
|
120 |
-
)
|
121 |
-
|
122 |
try:
|
123 |
-
|
124 |
-
|
125 |
-
)
|
|
|
|
|
|
|
|
|
126 |
except Exception as e:
|
127 |
-
|
128 |
|
129 |
-
part_path = lang_tmpdir / f"part_{idx}.
|
130 |
-
|
131 |
-
out_mp3.write(response.audio_content)
|
132 |
|
133 |
try:
|
134 |
-
segment = AudioSegment.
|
135 |
audio_segments.append(segment)
|
136 |
except CouldntDecodeError as e:
|
137 |
-
raise RuntimeError(f"Failed to decode
|
138 |
|
139 |
if not audio_segments:
|
140 |
raise RuntimeError("No audio segments were successfully synthesized or decoded.")
|
141 |
|
142 |
combined_audio = sum(audio_segments, AudioSegment.empty())
|
143 |
-
final_path = lang_tmpdir / "podcast_audio.
|
144 |
-
combined_audio.export(final_path, format="
|
145 |
return final_path
|
146 |
|
147 |
# ------------------------------------------------------------------
|
@@ -149,58 +147,32 @@ def synthesize_speech_google(
|
|
149 |
# ------------------------------------------------------------------
|
150 |
|
151 |
def generate_podcast(
|
152 |
-
|
153 |
pdf_file_obj: Optional[gr.File],
|
154 |
selected_lang_names: List[str]
|
155 |
) -> List[Optional[Any]]:
|
156 |
|
157 |
-
if not
|
158 |
-
raise gr.Error("Please enter your Google AI Studio API Key for Gemini.")
|
159 |
if not pdf_file_obj:
|
160 |
raise gr.Error("Please upload a PDF file.")
|
161 |
if not selected_lang_names:
|
162 |
raise gr.Error("Please select at least one language for the podcast.")
|
163 |
|
|
|
164 |
try:
|
165 |
-
genai.configure(api_key=
|
166 |
-
|
167 |
-
raise gr.Error(f"Failed to configure Gemini API. Check your API key. Error: {e}")
|
168 |
-
|
169 |
-
# IMPORTANT: Google Cloud Text-to-Speech client initialization.
|
170 |
-
# It expects GOOGLE_APPLICATION_CREDENTIALS environment variable to be set,
|
171 |
-
# pointing to your service account JSON key file.
|
172 |
-
# In Hugging Face Spaces, upload this JSON file as a Secret, e.g., named
|
173 |
-
# `GOOGLE_CREDS_JSON_CONTENT` (paste the content of the file).
|
174 |
-
# Then, in your Space's startup or here, you'd write this content to a temporary file
|
175 |
-
# and set GOOGLE_APPLICATION_CREDENTIALS to that temp file's path.
|
176 |
-
# Or, if GOOGLE_APPLICATION_CREDENTIALS points to a file path directly (less secure for pasted content).
|
177 |
-
|
178 |
-
# Example for setting GOOGLE_APPLICATION_CREDENTIALS from a Space secret:
|
179 |
-
google_creds_json_content = os.getenv("GOOGLE_CREDS_JSON_CONTENT")
|
180 |
-
temp_creds_file = None
|
181 |
-
if google_creds_json_content:
|
182 |
-
try:
|
183 |
-
fd, temp_creds_path = tempfile.mkstemp(suffix=".json")
|
184 |
-
with os.fdopen(fd, "w") as tmp:
|
185 |
-
tmp.write(google_creds_json_content)
|
186 |
-
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = temp_creds_path
|
187 |
-
temp_creds_file = Path(temp_creds_path)
|
188 |
-
gr.Info("Using GOOGLE_CREDS_JSON_CONTENT secret for Text-to-Speech API authentication.")
|
189 |
-
except Exception as e:
|
190 |
-
gr.Warning(f"Could not process GOOGLE_CREDS_JSON_CONTENT secret: {e}. TTS might fail.")
|
191 |
-
elif not os.getenv("GOOGLE_APPLICATION_CREDENTIALS"):
|
192 |
-
gr.Warning(
|
193 |
-
"GOOGLE_APPLICATION_CREDENTIALS environment variable not set, and no "
|
194 |
-
"GOOGLE_CREDS_JSON_CONTENT secret found. "
|
195 |
-
"Google Text-to-Speech API calls may fail. "
|
196 |
-
"Please set up authentication for Google Cloud Text-to-Speech."
|
197 |
-
)
|
198 |
-
|
199 |
-
try:
|
200 |
-
tts_client = texttospeech.TextToSpeechClient()
|
201 |
except Exception as e:
|
202 |
-
raise gr.Error(f"Failed to
|
203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
selected_codes = [LANG_CODE_BY_NAME[name] for name in selected_lang_names]
|
206 |
results_data: Dict[str, Dict[str, Optional[str]]] = {
|
@@ -219,14 +191,18 @@ def generate_podcast(
|
|
219 |
if not lecture_text.strip():
|
220 |
raise gr.Error("Could not extract any text from the PDF, or the PDF content is empty.")
|
221 |
|
222 |
-
# Initialize Gemini model (e.g., 'gemini-1.5-flash' or 'gemini-pro')
|
223 |
-
#
|
224 |
-
|
|
|
|
|
|
|
|
|
225 |
|
226 |
for code in selected_codes:
|
227 |
info = LANG_INFO[code]
|
228 |
lang_name = info["name"]
|
229 |
-
|
230 |
|
231 |
gr.Info(f"Processing for {lang_name}...")
|
232 |
lang_tmpdir = tmpdir_base / code
|
@@ -237,8 +213,9 @@ def generate_podcast(
|
|
237 |
gr.Info(f"Generating dialogue for {lang_name} with Gemini...")
|
238 |
prompt_for_gemini = PROMPT_TEMPLATE.format(lang_name=lang_name, content=lecture_text)
|
239 |
try:
|
|
|
240 |
response = gemini_model.generate_content(prompt_for_gemini)
|
241 |
-
dialogue_raw = response.text
|
242 |
|
243 |
if not dialogue_raw or not dialogue_raw.strip():
|
244 |
gr.Warning(f"Gemini returned empty dialogue for {lang_name}. Skipping.")
|
@@ -251,20 +228,26 @@ def generate_podcast(
|
|
251 |
results_data[code]["script_file"] = str(script_file_path)
|
252 |
|
253 |
except Exception as e:
|
|
|
|
|
|
|
254 |
gr.Error(f"Error generating dialogue with Gemini for {lang_name}: {e}")
|
255 |
continue
|
256 |
|
257 |
if dialogue:
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
268 |
|
269 |
final_ordered_results: List[Optional[Any]] = []
|
270 |
for code_key in LANG_INFO.keys():
|
@@ -276,24 +259,13 @@ def generate_podcast(
|
|
276 |
gr.Info("Podcast generation complete!")
|
277 |
return final_ordered_results
|
278 |
|
279 |
-
except gr.Error as e:
|
280 |
raise e
|
281 |
-
except Exception as e:
|
282 |
import traceback
|
283 |
print("An unexpected error occurred in generate_podcast:")
|
284 |
traceback.print_exc()
|
285 |
raise gr.Error(f"An unexpected server error occurred. Details: {str(e)[:100]}...")
|
286 |
-
finally:
|
287 |
-
# Clean up the temporary credentials file if it was created
|
288 |
-
if temp_creds_file and temp_creds_file.exists():
|
289 |
-
try:
|
290 |
-
temp_creds_file.unlink()
|
291 |
-
# Unset the env var if you want, though it's specific to this run
|
292 |
-
# if "GOOGLE_APPLICATION_CREDENTIALS" in os.environ and os.environ["GOOGLE_APPLICATION_CREDENTIALS"] == str(temp_creds_file):
|
293 |
-
# del os.environ["GOOGLE_APPLICATION_CREDENTIALS"]
|
294 |
-
except Exception as e_clean:
|
295 |
-
print(f"Warning: Could not clean up temporary credentials file {temp_creds_file}: {e_clean}")
|
296 |
-
|
297 |
|
298 |
# ------------------------------------------------------------------
|
299 |
# Gradio Interface Setup
|
@@ -302,14 +274,15 @@ language_names_ordered = [LANG_INFO[code]["name"] for code in LANG_INFO.keys()]
|
|
302 |
|
303 |
inputs = [
|
304 |
gr.Textbox(
|
305 |
-
label="Enter your Google AI Studio API Key (for Gemini)",
|
306 |
type="password",
|
307 |
-
placeholder="Paste your API key here",
|
|
|
308 |
),
|
309 |
gr.File(label="Upload Lecture PDF", file_types=[".pdf"]),
|
310 |
gr.CheckboxGroup(
|
311 |
choices=language_names_ordered,
|
312 |
-
value=["English"],
|
313 |
label="Select podcast language(s) to generate",
|
314 |
),
|
315 |
]
|
@@ -318,7 +291,7 @@ outputs = []
|
|
318 |
for code in LANG_INFO.keys():
|
319 |
info = LANG_INFO[code]
|
320 |
lang_name = info["name"]
|
321 |
-
outputs.append(gr.Audio(label=f"{lang_name} Podcast (.
|
322 |
outputs.append(gr.Markdown(label=f"{lang_name} Script"))
|
323 |
outputs.append(gr.File(label=f"Download {lang_name} Script (.txt)", type="filepath"))
|
324 |
|
@@ -326,23 +299,26 @@ iface = gr.Interface(
|
|
326 |
fn=generate_podcast,
|
327 |
inputs=inputs,
|
328 |
outputs=outputs,
|
329 |
-
title="Lecture → Podcast & Script (
|
330 |
description=(
|
331 |
-
"**
|
332 |
-
"1. Enter your Google AI Studio API Key for
|
333 |
-
"2.
|
334 |
-
"
|
335 |
-
"
|
336 |
-
"Paste the *entire content* of your service account JSON key file as the value for this secret.\n\n"
|
337 |
"Upload a lecture PDF, choose language(s), and receive an audio podcast "
|
338 |
-
"and its script. Dialogue by Google Gemini, speech by
|
339 |
),
|
340 |
allow_flagging="never",
|
341 |
)
|
342 |
|
343 |
if __name__ == "__main__":
|
344 |
-
#
|
345 |
-
#
|
346 |
-
|
347 |
-
|
|
|
|
|
|
|
|
|
348 |
iface.launch()
|
|
|
1 |
# =============================================================
|
2 |
+
# Hugging Face Space – Lecture → Podcast Generator (Gemini + HF TTS)
|
3 |
# =============================================================
|
4 |
+
# • **Text generation** – Google Gemini API (via user-provided genai API Key)
|
5 |
+
# • **Speech synthesis** – Hugging Face Inference API for TTS (via HF_TOKEN secret)
|
6 |
# -----------------------------------------------------------------
|
7 |
|
8 |
import os
|
|
|
17 |
from pydub import AudioSegment
|
18 |
from pydub.exceptions import CouldntDecodeError
|
19 |
|
20 |
+
# For Hugging Face TTS
|
21 |
+
from huggingface_hub import InferenceClient, HubHTTPError
|
22 |
+
|
23 |
+
# For Google Gemini
|
24 |
try:
|
25 |
import google.generativeai as genai
|
|
|
26 |
except ImportError:
|
27 |
+
raise ImportError("Please install Google Generative AI SDK: pip install google-generativeai")
|
28 |
+
|
29 |
+
# ------------------------------------------------------------------
|
30 |
+
# Hugging Face Inference API client for TTS (uses HF_TOKEN secret)
|
31 |
+
# ------------------------------------------------------------------
|
32 |
+
hf_tts_client: Optional[InferenceClient] = None
|
33 |
+
hf_token = os.getenv("HF_TOKEN")
|
34 |
+
if hf_token:
|
35 |
+
hf_tts_client = InferenceClient(token=hf_token)
|
36 |
+
else:
|
37 |
+
# This print will show in the Space logs if HF_TOKEN is missing
|
38 |
+
print("WARNING: HF_TOKEN secret not found. Hugging Face TTS will not be available.")
|
39 |
|
40 |
# ------------------------------------------------------------------
|
41 |
+
# Language metadata for Hugging Face MMS-TTS models
|
|
|
|
|
42 |
# ------------------------------------------------------------------
|
43 |
LANG_INFO: Dict[str, Dict[str, str]] = {
|
44 |
+
"en": {"name": "English", "tts_model": "facebook/mms-tts-eng"},
|
45 |
+
"bn": {"name": "Bangla", "tts_model": "facebook/mms-tts-ben"},
|
46 |
+
"zh": {"name": "Chinese", "tts_model": "facebook/mms-tts-zho"},
|
47 |
+
"ur": {"name": "Urdu", "tts_model": "facebook/mms-tts-urd"},
|
48 |
+
"ne": {"name": "Nepali", "tts_model": "facebook/mms-tts-npi"},
|
49 |
}
|
50 |
LANG_CODE_BY_NAME = {info["name"]: code for code, info in LANG_INFO.items()}
|
51 |
|
52 |
# ------------------------------------------------------------------
|
53 |
+
# Prompt template for Gemini
|
54 |
# ------------------------------------------------------------------
|
55 |
PROMPT_TEMPLATE = textwrap.dedent(
|
56 |
"""
|
|
|
72 |
except Exception as e:
|
73 |
raise gr.Error(f"Failed to process PDF: {e}")
|
74 |
|
75 |
+
TOKEN_LIMIT = 8000
|
76 |
|
77 |
def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str:
|
78 |
words = text.split()
|
|
|
82 |
return text
|
83 |
|
84 |
# ------------------------------------------------------------------
|
85 |
+
# TTS helper using Hugging Face Inference API
|
86 |
# ------------------------------------------------------------------
|
87 |
+
CHUNK_CHAR_LIMIT_HF = 280
|
|
|
88 |
|
89 |
+
def _split_to_chunks_hf(text: str, limit: int = CHUNK_CHAR_LIMIT_HF) -> List[str]:
|
90 |
sentences_raw = re.split(r"(?<=[.!?])\s+", text.strip())
|
91 |
sentences = [s.strip() for s in sentences_raw if s.strip()]
|
92 |
if not sentences: return []
|
|
|
101 |
return [chunk for chunk in chunks if chunk.strip()]
|
102 |
|
103 |
|
104 |
+
def synthesize_speech_hf(
|
105 |
+
text: str,
|
106 |
+
hf_model_id: str,
|
107 |
lang_tmpdir: Path,
|
108 |
+
tts_client: InferenceClient
|
109 |
) -> Path:
|
110 |
+
chunks = _split_to_chunks_hf(text)
|
|
|
111 |
if not chunks:
|
112 |
raise ValueError("Text resulted in no speakable chunks after splitting.")
|
113 |
|
114 |
audio_segments: List[AudioSegment] = []
|
115 |
for idx, chunk in enumerate(chunks):
|
116 |
+
gr.Info(f"Synthesizing audio for chunk {idx + 1}/{len(chunks)} with HF TTS ({hf_model_id})...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
try:
|
118 |
+
audio_bytes = tts_client.text_to_speech(chunk, model=hf_model_id)
|
119 |
+
except HubHTTPError as e:
|
120 |
+
error_message = f"HF TTS request failed for chunk {idx+1} ('{chunk[:30]}...'): {e}"
|
121 |
+
if "Input validation error: `inputs` must be non-empty" in str(e) and not chunk.strip():
|
122 |
+
gr.Warning(f"Skipping an apparently empty chunk for HF TTS: Chunk {idx+1}")
|
123 |
+
continue
|
124 |
+
raise RuntimeError(error_message) from e
|
125 |
except Exception as e:
|
126 |
+
raise RuntimeError(f"HF TTS client error for chunk {idx+1}: {e}") from e
|
127 |
|
128 |
+
part_path = lang_tmpdir / f"part_{idx}.flac"
|
129 |
+
part_path.write_bytes(audio_bytes)
|
|
|
130 |
|
131 |
try:
|
132 |
+
segment = AudioSegment.from_file(part_path, format="flac")
|
133 |
audio_segments.append(segment)
|
134 |
except CouldntDecodeError as e:
|
135 |
+
raise RuntimeError(f"Failed to decode FLAC audio chunk {idx+1} from {part_path}. Error: {e}") from e
|
136 |
|
137 |
if not audio_segments:
|
138 |
raise RuntimeError("No audio segments were successfully synthesized or decoded.")
|
139 |
|
140 |
combined_audio = sum(audio_segments, AudioSegment.empty())
|
141 |
+
final_path = lang_tmpdir / "podcast_audio.flac"
|
142 |
+
combined_audio.export(final_path, format="flac")
|
143 |
return final_path
|
144 |
|
145 |
# ------------------------------------------------------------------
|
|
|
147 |
# ------------------------------------------------------------------
|
148 |
|
149 |
def generate_podcast(
|
150 |
+
gemini_api_key_from_ui: Optional[str], # Explicitly named to show source
|
151 |
pdf_file_obj: Optional[gr.File],
|
152 |
selected_lang_names: List[str]
|
153 |
) -> List[Optional[Any]]:
|
154 |
|
155 |
+
if not gemini_api_key_from_ui: # Check the key provided from the UI input
|
156 |
+
raise gr.Error("Please enter your Google AI Studio API Key for Gemini in the input field.")
|
157 |
if not pdf_file_obj:
|
158 |
raise gr.Error("Please upload a PDF file.")
|
159 |
if not selected_lang_names:
|
160 |
raise gr.Error("Please select at least one language for the podcast.")
|
161 |
|
162 |
+
# Configure Gemini API using the key directly from the UI input
|
163 |
try:
|
164 |
+
genai.configure(api_key=gemini_api_key_from_ui)
|
165 |
+
gr.Info("Gemini API configured successfully with the provided key.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
except Exception as e:
|
167 |
+
raise gr.Error(f"Failed to configure Gemini API with the provided key. Please check your API key. Error: {e}")
|
168 |
|
169 |
+
# Check if HF TTS client is available (HF_TOKEN was provided as a secret)
|
170 |
+
if not hf_tts_client:
|
171 |
+
gr.Warning( # Changed to gr.Warning to allow script generation if TTS fails to init
|
172 |
+
"Hugging Face TTS client is not available (HF_TOKEN secret might be missing or invalid). "
|
173 |
+
"Speech synthesis will be skipped, but script generation will be attempted."
|
174 |
+
)
|
175 |
+
# Note: Script generation can still proceed, TTS will be skipped later if client is None.
|
176 |
|
177 |
selected_codes = [LANG_CODE_BY_NAME[name] for name in selected_lang_names]
|
178 |
results_data: Dict[str, Dict[str, Optional[str]]] = {
|
|
|
191 |
if not lecture_text.strip():
|
192 |
raise gr.Error("Could not extract any text from the PDF, or the PDF content is empty.")
|
193 |
|
194 |
+
# Initialize Gemini model (e.g., 'gemini-1.5-flash-latest' or 'gemini-pro')
|
195 |
+
# This happens after genai.configure has been called.
|
196 |
+
try:
|
197 |
+
gemini_model = genai.GenerativeModel('gemini-1.5-flash-latest') # Or 'gemini-pro'
|
198 |
+
except Exception as e:
|
199 |
+
raise gr.Error(f"Failed to initialize Gemini model. This might be due to an invalid API key or API access issues. Error: {e}")
|
200 |
+
|
201 |
|
202 |
for code in selected_codes:
|
203 |
info = LANG_INFO[code]
|
204 |
lang_name = info["name"]
|
205 |
+
hf_tts_model_id = info["tts_model"]
|
206 |
|
207 |
gr.Info(f"Processing for {lang_name}...")
|
208 |
lang_tmpdir = tmpdir_base / code
|
|
|
213 |
gr.Info(f"Generating dialogue for {lang_name} with Gemini...")
|
214 |
prompt_for_gemini = PROMPT_TEMPLATE.format(lang_name=lang_name, content=lecture_text)
|
215 |
try:
|
216 |
+
# The gemini_model is initialized using the API key from genai.configure()
|
217 |
response = gemini_model.generate_content(prompt_for_gemini)
|
218 |
+
dialogue_raw = response.text
|
219 |
|
220 |
if not dialogue_raw or not dialogue_raw.strip():
|
221 |
gr.Warning(f"Gemini returned empty dialogue for {lang_name}. Skipping.")
|
|
|
228 |
results_data[code]["script_file"] = str(script_file_path)
|
229 |
|
230 |
except Exception as e:
|
231 |
+
# Check if the error indicates an API key issue from Gemini
|
232 |
+
if "API_KEY_INVALID" in str(e) or "permission" in str(e).lower():
|
233 |
+
raise gr.Error(f"Gemini API Key error for {lang_name}: {e}. Please verify your API key and its permissions.")
|
234 |
gr.Error(f"Error generating dialogue with Gemini for {lang_name}: {e}")
|
235 |
continue
|
236 |
|
237 |
if dialogue:
|
238 |
+
if hf_tts_client: # Only attempt TTS if client is available
|
239 |
+
gr.Info(f"Synthesizing speech for {lang_name} with Hugging Face TTS ({hf_tts_model_id})...")
|
240 |
+
try:
|
241 |
+
tts_path = synthesize_speech_hf(dialogue, hf_tts_model_id, lang_tmpdir, hf_tts_client)
|
242 |
+
results_data[code]["audio"] = str(tts_path)
|
243 |
+
except ValueError as e: # From _split_to_chunks or synthesize_speech if no chunks
|
244 |
+
gr.Warning(f"Could not synthesize speech for {lang_name} (ValueError): {e}")
|
245 |
+
except RuntimeError as e: # From synthesize_speech (TTS/pydub errors)
|
246 |
+
gr.Error(f"Error synthesizing speech for {lang_name} (RuntimeError): {e}")
|
247 |
+
except Exception as e: # Catch any other unexpected errors during synthesis
|
248 |
+
gr.Error(f"Unexpected error during speech synthesis for {lang_name}: {e}")
|
249 |
+
else:
|
250 |
+
gr.Info(f"HF TTS client not available. Skipping speech synthesis for {lang_name}.")
|
251 |
|
252 |
final_ordered_results: List[Optional[Any]] = []
|
253 |
for code_key in LANG_INFO.keys():
|
|
|
259 |
gr.Info("Podcast generation complete!")
|
260 |
return final_ordered_results
|
261 |
|
262 |
+
except gr.Error as e: # Re-raise Gradio-specific errors to be displayed in UI
|
263 |
raise e
|
264 |
+
except Exception as e: # Catch other unexpected errors during the process
|
265 |
import traceback
|
266 |
print("An unexpected error occurred in generate_podcast:")
|
267 |
traceback.print_exc()
|
268 |
raise gr.Error(f"An unexpected server error occurred. Details: {str(e)[:100]}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
# ------------------------------------------------------------------
|
271 |
# Gradio Interface Setup
|
|
|
274 |
|
275 |
inputs = [
|
276 |
gr.Textbox(
|
277 |
+
label="Enter your Google AI Studio API Key (for Gemini text generation)",
|
278 |
type="password",
|
279 |
+
placeholder="Paste your Gemini API key here",
|
280 |
+
# value=os.getenv("GEMINI_API_KEY_FOR_DEV") # Optional: for local dev default, remove for deployment
|
281 |
),
|
282 |
gr.File(label="Upload Lecture PDF", file_types=[".pdf"]),
|
283 |
gr.CheckboxGroup(
|
284 |
choices=language_names_ordered,
|
285 |
+
value=["English"], # Default language selection
|
286 |
label="Select podcast language(s) to generate",
|
287 |
),
|
288 |
]
|
|
|
291 |
for code in LANG_INFO.keys():
|
292 |
info = LANG_INFO[code]
|
293 |
lang_name = info["name"]
|
294 |
+
outputs.append(gr.Audio(label=f"{lang_name} Podcast (.flac)", type="filepath"))
|
295 |
outputs.append(gr.Markdown(label=f"{lang_name} Script"))
|
296 |
outputs.append(gr.File(label=f"Download {lang_name} Script (.txt)", type="filepath"))
|
297 |
|
|
|
299 |
fn=generate_podcast,
|
300 |
inputs=inputs,
|
301 |
outputs=outputs,
|
302 |
+
title="Lecture → Podcast & Script (Gemini Text + HF Speech)",
|
303 |
description=(
|
304 |
+
"**SETUP:**\n"
|
305 |
+
"1. **Gemini API Key**: Enter your Google AI Studio API Key in the field below for text generation.\n"
|
306 |
+
"2. **Hugging Face Token (for Speech)**: For Text-to-Speech, ensure you have a Hugging Face Token. "
|
307 |
+
"In this Hugging Face Space, go to 'Settings' -> 'Secrets' and add a new secret named `HF_TOKEN`. "
|
308 |
+
"Paste your Hugging Face token as its value.\n\n"
|
|
|
309 |
"Upload a lecture PDF, choose language(s), and receive an audio podcast "
|
310 |
+
"and its script. Dialogue by Google Gemini, speech by Hugging Face MMS-TTS."
|
311 |
),
|
312 |
allow_flagging="never",
|
313 |
)
|
314 |
|
315 |
if __name__ == "__main__":
|
316 |
+
# For local testing of HF_TOKEN, you can set it as an environment variable:
|
317 |
+
# os.environ["HF_TOKEN"] = "your_hf_token_here"
|
318 |
+
if not os.getenv("HF_TOKEN"):
|
319 |
+
print("Reminder: For local testing with TTS, set the HF_TOKEN environment variable.")
|
320 |
+
# The Gemini API key will be taken from the UI input.
|
321 |
+
# You could add a default value for local testing to the gr.Textbox `value` argument if desired.
|
322 |
+
# e.g. value=os.getenv("GEMINI_API_KEY_FOR_DEV")
|
323 |
+
|
324 |
iface.launch()
|