Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
# =============================================================
|
2 |
-
#
|
|
|
3 |
# =============================================================
|
4 |
-
# • **Text generation** – Google Gemini API (via user-provided genai API Key)
|
5 |
-
# • **Speech synthesis** – Hugging Face Inference API for TTS (via HF_TOKEN secret)
|
6 |
-
# -----------------------------------------------------------------
|
7 |
-
|
8 |
import os
|
9 |
import re
|
10 |
import tempfile
|
@@ -17,29 +14,19 @@ from PyPDF2 import PdfReader
|
|
17 |
from pydub import AudioSegment
|
18 |
from pydub.exceptions import CouldntDecodeError
|
19 |
|
20 |
-
#
|
21 |
from huggingface_hub import InferenceClient
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
import google.generativeai as genai
|
26 |
-
except ImportError:
|
27 |
-
raise ImportError("Please install Google Generative AI SDK: pip install google-generativeai")
|
28 |
|
29 |
# ------------------------------------------------------------------
|
30 |
-
#
|
31 |
# ------------------------------------------------------------------
|
32 |
-
hf_tts_client: Optional[InferenceClient] = None
|
33 |
hf_token = os.getenv("HF_TOKEN")
|
34 |
-
if hf_token
|
35 |
-
hf_tts_client = InferenceClient(token=hf_token)
|
36 |
-
else:
|
37 |
-
# This print will show in the Space logs if HF_TOKEN is missing
|
38 |
-
print("WARNING: HF_TOKEN secret not found. Hugging Face TTS will not be available.")
|
39 |
|
40 |
-
#
|
41 |
-
# Language metadata for Hugging Face MMS-TTS models
|
42 |
-
# ------------------------------------------------------------------
|
43 |
LANG_INFO: Dict[str, Dict[str, str]] = {
|
44 |
"en": {"name": "English", "tts_model": "facebook/mms-tts-eng"},
|
45 |
"bn": {"name": "Bangla", "tts_model": "facebook/mms-tts-ben"},
|
@@ -49,276 +36,122 @@ LANG_INFO: Dict[str, Dict[str, str]] = {
|
|
49 |
}
|
50 |
LANG_CODE_BY_NAME = {info["name"]: code for code, info in LANG_INFO.items()}
|
51 |
|
52 |
-
#
|
53 |
-
# Prompt template for Gemini
|
54 |
-
# ------------------------------------------------------------------
|
55 |
PROMPT_TEMPLATE = textwrap.dedent(
|
56 |
"""
|
57 |
You are producing a lively two-host educational podcast in {lang_name}.
|
58 |
Summarize the following lecture content into a dialogue of **approximately 300 words**.
|
59 |
Make it engaging: hosts ask questions, clarify ideas with analogies, and
|
60 |
-
wrap up with a concise recap. Preserve technical accuracy.
|
61 |
|
62 |
### Lecture Content
|
63 |
{content}
|
64 |
"""
|
65 |
)
|
66 |
|
67 |
-
# PDF
|
68 |
-
def extract_pdf_text(pdf_path: str) -> str:
|
69 |
-
try:
|
70 |
-
reader = PdfReader(pdf_path)
|
71 |
-
return "\n".join(page.extract_text() or "" for page in reader.pages)
|
72 |
-
except Exception as e:
|
73 |
-
raise gr.Error(f"Failed to process PDF: {e}")
|
74 |
-
|
75 |
TOKEN_LIMIT = 8000
|
76 |
|
|
|
|
|
|
|
|
|
77 |
def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str:
|
78 |
words = text.split()
|
79 |
-
if len(words) > limit
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
sentences = [s.strip() for s in sentences_raw if s.strip()]
|
92 |
-
if not sentences: return []
|
93 |
-
chunks, current_chunk = [], ""
|
94 |
-
for sent in sentences:
|
95 |
-
if current_chunk and (len(current_chunk) + len(sent) + 1 > limit):
|
96 |
-
chunks.append(current_chunk)
|
97 |
-
current_chunk = sent
|
98 |
else:
|
99 |
-
|
100 |
-
if
|
101 |
-
return
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
except HubHTTPError as e:
|
120 |
-
error_message = f"HF TTS request failed for chunk {idx+1} ('{chunk[:30]}...'): {e}"
|
121 |
-
if "Input validation error: `inputs` must be non-empty" in str(e) and not chunk.strip():
|
122 |
-
gr.Warning(f"Skipping an apparently empty chunk for HF TTS: Chunk {idx+1}")
|
123 |
-
continue
|
124 |
-
raise RuntimeError(error_message) from e
|
125 |
-
except Exception as e:
|
126 |
-
raise RuntimeError(f"HF TTS client error for chunk {idx+1}: {e}") from e
|
127 |
-
|
128 |
-
part_path = lang_tmpdir / f"part_{idx}.flac"
|
129 |
-
part_path.write_bytes(audio_bytes)
|
130 |
-
|
131 |
-
try:
|
132 |
-
segment = AudioSegment.from_file(part_path, format="flac")
|
133 |
-
audio_segments.append(segment)
|
134 |
-
except CouldntDecodeError as e:
|
135 |
-
raise RuntimeError(f"Failed to decode FLAC audio chunk {idx+1} from {part_path}. Error: {e}") from e
|
136 |
-
|
137 |
-
if not audio_segments:
|
138 |
-
raise RuntimeError("No audio segments were successfully synthesized or decoded.")
|
139 |
-
|
140 |
-
combined_audio = sum(audio_segments, AudioSegment.empty())
|
141 |
-
final_path = lang_tmpdir / "podcast_audio.flac"
|
142 |
-
combined_audio.export(final_path, format="flac")
|
143 |
-
return final_path
|
144 |
-
|
145 |
-
# ------------------------------------------------------------------
|
146 |
-
# Main pipeline function for Gradio
|
147 |
-
# ------------------------------------------------------------------
|
148 |
|
149 |
def generate_podcast(
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
) -> List[Optional[Any]]:
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
)
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
if not lecture_text.strip():
|
192 |
-
raise gr.Error("Could not extract any text from the PDF, or the PDF content is empty.")
|
193 |
-
|
194 |
-
# Initialize Gemini model (e.g., 'gemini-1.5-flash-latest' or 'gemini-pro')
|
195 |
-
# This happens after genai.configure has been called.
|
196 |
-
try:
|
197 |
-
gemini_model = genai.GenerativeModel('gemini-1.5-flash-latest') # Or 'gemini-pro'
|
198 |
-
except Exception as e:
|
199 |
-
raise gr.Error(f"Failed to initialize Gemini model. This might be due to an invalid API key or API access issues. Error: {e}")
|
200 |
-
|
201 |
-
|
202 |
-
for code in selected_codes:
|
203 |
-
info = LANG_INFO[code]
|
204 |
-
lang_name = info["name"]
|
205 |
-
hf_tts_model_id = info["tts_model"]
|
206 |
-
|
207 |
-
gr.Info(f"Processing for {lang_name}...")
|
208 |
-
lang_tmpdir = tmpdir_base / code
|
209 |
-
lang_tmpdir.mkdir(parents=True, exist_ok=True)
|
210 |
-
|
211 |
-
dialogue: Optional[str] = None
|
212 |
-
|
213 |
-
gr.Info(f"Generating dialogue for {lang_name} with Gemini...")
|
214 |
-
prompt_for_gemini = PROMPT_TEMPLATE.format(lang_name=lang_name, content=lecture_text)
|
215 |
-
try:
|
216 |
-
# The gemini_model is initialized using the API key from genai.configure()
|
217 |
-
response = gemini_model.generate_content(prompt_for_gemini)
|
218 |
-
dialogue_raw = response.text
|
219 |
-
|
220 |
-
if not dialogue_raw or not dialogue_raw.strip():
|
221 |
-
gr.Warning(f"Gemini returned empty dialogue for {lang_name}. Skipping.")
|
222 |
-
continue
|
223 |
-
|
224 |
-
dialogue = dialogue_raw
|
225 |
-
results_data[code]["script_text"] = dialogue
|
226 |
-
script_file_path = lang_tmpdir / f"podcast_script_{code}.txt"
|
227 |
-
script_file_path.write_text(dialogue, encoding="utf-8")
|
228 |
-
results_data[code]["script_file"] = str(script_file_path)
|
229 |
-
|
230 |
-
except Exception as e:
|
231 |
-
# Check if the error indicates an API key issue from Gemini
|
232 |
-
if "API_KEY_INVALID" in str(e) or "permission" in str(e).lower():
|
233 |
-
raise gr.Error(f"Gemini API Key error for {lang_name}: {e}. Please verify your API key and its permissions.")
|
234 |
-
gr.Error(f"Error generating dialogue with Gemini for {lang_name}: {e}")
|
235 |
-
continue
|
236 |
-
|
237 |
-
if dialogue:
|
238 |
-
if hf_tts_client: # Only attempt TTS if client is available
|
239 |
-
gr.Info(f"Synthesizing speech for {lang_name} with Hugging Face TTS ({hf_tts_model_id})...")
|
240 |
-
try:
|
241 |
-
tts_path = synthesize_speech_hf(dialogue, hf_tts_model_id, lang_tmpdir, hf_tts_client)
|
242 |
-
results_data[code]["audio"] = str(tts_path)
|
243 |
-
except ValueError as e: # From _split_to_chunks or synthesize_speech if no chunks
|
244 |
-
gr.Warning(f"Could not synthesize speech for {lang_name} (ValueError): {e}")
|
245 |
-
except RuntimeError as e: # From synthesize_speech (TTS/pydub errors)
|
246 |
-
gr.Error(f"Error synthesizing speech for {lang_name} (RuntimeError): {e}")
|
247 |
-
except Exception as e: # Catch any other unexpected errors during synthesis
|
248 |
-
gr.Error(f"Unexpected error during speech synthesis for {lang_name}: {e}")
|
249 |
-
else:
|
250 |
-
gr.Info(f"HF TTS client not available. Skipping speech synthesis for {lang_name}.")
|
251 |
-
|
252 |
-
final_ordered_results: List[Optional[Any]] = []
|
253 |
-
for code_key in LANG_INFO.keys():
|
254 |
-
lang_output_data = results_data[code_key]
|
255 |
-
final_ordered_results.append(lang_output_data["audio"])
|
256 |
-
final_ordered_results.append(lang_output_data["script_text"])
|
257 |
-
final_ordered_results.append(lang_output_data["script_file"])
|
258 |
-
|
259 |
-
gr.Info("Podcast generation complete!")
|
260 |
-
return final_ordered_results
|
261 |
-
|
262 |
-
except gr.Error as e: # Re-raise Gradio-specific errors to be displayed in UI
|
263 |
-
raise e
|
264 |
-
except Exception as e: # Catch other unexpected errors during the process
|
265 |
-
import traceback
|
266 |
-
print("An unexpected error occurred in generate_podcast:")
|
267 |
-
traceback.print_exc()
|
268 |
-
raise gr.Error(f"An unexpected server error occurred. Details: {str(e)[:100]}...")
|
269 |
-
|
270 |
-
# ------------------------------------------------------------------
|
271 |
-
# Gradio Interface Setup
|
272 |
-
# ------------------------------------------------------------------
|
273 |
-
language_names_ordered = [LANG_INFO[code]["name"] for code in LANG_INFO.keys()]
|
274 |
-
|
275 |
inputs = [
|
276 |
-
gr.Textbox(
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
# value=os.getenv("GEMINI_API_KEY_FOR_DEV") # Optional: for local dev default, remove for deployment
|
281 |
-
),
|
282 |
-
gr.File(label="Upload Lecture PDF", file_types=[".pdf"]),
|
283 |
-
gr.CheckboxGroup(
|
284 |
-
choices=language_names_ordered,
|
285 |
-
value=["English"], # Default language selection
|
286 |
-
label="Select podcast language(s) to generate",
|
287 |
-
),
|
288 |
]
|
289 |
-
|
290 |
outputs = []
|
291 |
-
for code in LANG_INFO.
|
292 |
-
info =
|
293 |
-
|
294 |
-
outputs.append(gr.
|
295 |
-
outputs.append(gr.Markdown(label=f"{lang_name} Script"))
|
296 |
-
outputs.append(gr.File(label=f"Download {lang_name} Script (.txt)", type="filepath"))
|
297 |
|
298 |
iface = gr.Interface(
|
299 |
fn=generate_podcast,
|
300 |
inputs=inputs,
|
301 |
outputs=outputs,
|
302 |
-
title="Lecture → Podcast & Script
|
303 |
-
description=(
|
304 |
-
"**SETUP:**\n"
|
305 |
-
"1. **Gemini API Key**: Enter your Google AI Studio API Key in the field below for text generation.\n"
|
306 |
-
"2. **Hugging Face Token (for Speech)**: For Text-to-Speech, ensure you have a Hugging Face Token. "
|
307 |
-
"In this Hugging Face Space, go to 'Settings' -> 'Secrets' and add a new secret named `HF_TOKEN`. "
|
308 |
-
"Paste your Hugging Face token as its value.\n\n"
|
309 |
-
"Upload a lecture PDF, choose language(s), and receive an audio podcast "
|
310 |
-
"and its script. Dialogue by Google Gemini, speech by Hugging Face MMS-TTS."
|
311 |
-
),
|
312 |
-
allow_flagging="never",
|
313 |
)
|
314 |
|
315 |
if __name__ == "__main__":
|
316 |
-
|
317 |
-
# os.environ["HF_TOKEN"] = "your_hf_token_here"
|
318 |
-
if not os.getenv("HF_TOKEN"):
|
319 |
-
print("Reminder: For local testing with TTS, set the HF_TOKEN environment variable.")
|
320 |
-
# The Gemini API key will be taken from the UI input.
|
321 |
-
# You could add a default value for local testing to the gr.Textbox `value` argument if desired.
|
322 |
-
# e.g. value=os.getenv("GEMINI_API_KEY_FOR_DEV")
|
323 |
-
|
324 |
-
iface.launch()
|
|
|
1 |
# =============================================================
|
2 |
+
# Lecture → Podcast & Script Generator (Gemini + HF TTS)
|
3 |
+
# Modified: Script outputs rendered as HTML
|
4 |
# =============================================================
|
|
|
|
|
|
|
|
|
5 |
import os
|
6 |
import re
|
7 |
import tempfile
|
|
|
14 |
from pydub import AudioSegment
|
15 |
from pydub.exceptions import CouldntDecodeError
|
16 |
|
17 |
+
# Hugging Face TTS
|
18 |
from huggingface_hub import InferenceClient
|
19 |
|
20 |
+
# Google Gemini
|
21 |
+
import google.generativeai as genai
|
|
|
|
|
|
|
22 |
|
23 |
# ------------------------------------------------------------------
|
24 |
+
# HF TTS client
|
25 |
# ------------------------------------------------------------------
|
|
|
26 |
hf_token = os.getenv("HF_TOKEN")
|
27 |
+
hf_tts_client: Optional[InferenceClient] = InferenceClient(token=hf_token) if hf_token else None
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
# Language metadata
|
|
|
|
|
30 |
LANG_INFO: Dict[str, Dict[str, str]] = {
|
31 |
"en": {"name": "English", "tts_model": "facebook/mms-tts-eng"},
|
32 |
"bn": {"name": "Bangla", "tts_model": "facebook/mms-tts-ben"},
|
|
|
36 |
}
|
37 |
LANG_CODE_BY_NAME = {info["name"]: code for code, info in LANG_INFO.items()}
|
38 |
|
39 |
+
# Prompt template
|
|
|
|
|
40 |
PROMPT_TEMPLATE = textwrap.dedent(
|
41 |
"""
|
42 |
You are producing a lively two-host educational podcast in {lang_name}.
|
43 |
Summarize the following lecture content into a dialogue of **approximately 300 words**.
|
44 |
Make it engaging: hosts ask questions, clarify ideas with analogies, and
|
45 |
+
wrap up with a concise recap. Preserve technical accuracy.
|
46 |
|
47 |
### Lecture Content
|
48 |
{content}
|
49 |
"""
|
50 |
)
|
51 |
|
52 |
+
# PDF extraction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
TOKEN_LIMIT = 8000
|
54 |
|
55 |
+
def extract_pdf_text(path: str) -> str:
|
56 |
+
reader = PdfReader(path)
|
57 |
+
return "\n".join(p.extract_text() or "" for p in reader.pages)
|
58 |
+
|
59 |
def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str:
|
60 |
words = text.split()
|
61 |
+
return " ".join(words[:limit]) if len(words) > limit else text
|
62 |
+
|
63 |
+
# TTS chunking
|
64 |
+
CHUNK_CHAR_LIMIT = 280
|
65 |
+
|
66 |
+
def split_chunks(text: str) -> List[str]:
|
67 |
+
sentences = re.split(r"(?<=[.!?])\s+", text.strip())
|
68 |
+
chunks, curr = [], ""
|
69 |
+
for s in sentences:
|
70 |
+
if curr and len(curr) + len(s) + 1 > CHUNK_CHAR_LIMIT:
|
71 |
+
chunks.append(curr)
|
72 |
+
curr = s
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
else:
|
74 |
+
curr = f"{curr} {s}" if curr else s
|
75 |
+
if curr: chunks.append(curr)
|
76 |
+
return chunks
|
77 |
+
|
78 |
+
# Synthesize speech
|
79 |
+
|
80 |
+
def synthesize(text: str, model_id: str, outdir: Path) -> str:
|
81 |
+
segments = []
|
82 |
+
for i, chunk in enumerate(split_chunks(text)):
|
83 |
+
audio_bytes = hf_tts_client.text_to_speech(chunk, model=model_id)
|
84 |
+
path = outdir / f"part{i}.flac"
|
85 |
+
path.write_bytes(audio_bytes)
|
86 |
+
seg = AudioSegment.from_file(path, format="flac")
|
87 |
+
segments.append(seg)
|
88 |
+
final = sum(segments, AudioSegment.empty())
|
89 |
+
out = outdir / "podcast.flac"
|
90 |
+
final.export(out, format="flac")
|
91 |
+
return str(out)
|
92 |
+
|
93 |
+
# Main pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
def generate_podcast(
|
96 |
+
gemini_key: str,
|
97 |
+
pdf_file: gr.File,
|
98 |
+
langs: List[str]
|
99 |
) -> List[Optional[Any]]:
|
100 |
+
if not gemini_key:
|
101 |
+
raise gr.Error("Enter Google AI Studio API Key.")
|
102 |
+
if not pdf_file:
|
103 |
+
raise gr.Error("Upload a PDF file.")
|
104 |
+
if not langs:
|
105 |
+
raise gr.Error("Select at least one language.")
|
106 |
+
|
107 |
+
genai.configure(api_key=gemini_key)
|
108 |
+
raw = extract_pdf_text(pdf_file.name)
|
109 |
+
content = truncate_text(raw)
|
110 |
+
|
111 |
+
tmp = Path(tempfile.mkdtemp())
|
112 |
+
results = []
|
113 |
+
data = {}
|
114 |
+
|
115 |
+
for code, info in LANG_INFO.items():
|
116 |
+
if info["name"] not in langs:
|
117 |
+
results.extend([None, None, None])
|
118 |
+
continue
|
119 |
+
# Generate script
|
120 |
+
prompt = PROMPT_TEMPLATE.format(lang_name=info["name"], content=content)
|
121 |
+
model = genai.GenerativeModel('gemini-1.5-flash-latest')
|
122 |
+
resp = model.generate_content(prompt)
|
123 |
+
script = resp.text.strip()
|
124 |
+
# Save plain text
|
125 |
+
script_path = tmp / f"script_{code}.txt"
|
126 |
+
script_path.write_text(script, encoding="utf-8")
|
127 |
+
# Render HTML version
|
128 |
+
html_script = f"<pre>{script}</pre>"
|
129 |
+
# Synthesize audio if available
|
130 |
+
audio_path = None
|
131 |
+
if hf_tts_client:
|
132 |
+
audio_path = synthesize(script, info["tts_model"], tmp / code)
|
133 |
+
results.extend([audio_path, html_script, str(script_path)])
|
134 |
+
return results
|
135 |
+
|
136 |
+
# Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
inputs = [
|
138 |
+
gr.Textbox(label="Google AI Studio API Key", type="password"),
|
139 |
+
gr.File(label="Lecture PDF", file_types=[".pdf"]),
|
140 |
+
gr.CheckboxGroup(choices=[info["name"] for info in LANG_INFO.values()],
|
141 |
+
value=["English"], label="Languages")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
]
|
|
|
143 |
outputs = []
|
144 |
+
for code, info in LANG_INFO.items():
|
145 |
+
outputs.append(gr.Audio(label=f"{info['name']} Podcast", type="filepath"))
|
146 |
+
outputs.append(gr.HTML(label=f"{info['name']} Script HTML"))
|
147 |
+
outputs.append(gr.File(label=f"Download {info['name']} Script"))
|
|
|
|
|
148 |
|
149 |
iface = gr.Interface(
|
150 |
fn=generate_podcast,
|
151 |
inputs=inputs,
|
152 |
outputs=outputs,
|
153 |
+
title="Lecture → Podcast & Script",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
)
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|