Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
# =============================================================
|
2 |
-
# Hugging
|
3 |
# =============================================================
|
4 |
-
# • **Text generation** – SmolAgents `HfApiModel` (Qwen/Qwen2.5
|
5 |
-
# • **Speech synthesis** – `InferenceClient.text_to_speech`, chunk
|
6 |
-
# (MMS
|
7 |
-
# into ≤280
|
8 |
# -----------------------------------------------------------------
|
9 |
|
10 |
import os
|
@@ -12,30 +12,31 @@ import re
|
|
12 |
import tempfile
|
13 |
import textwrap
|
14 |
from pathlib import Path
|
15 |
-
from typing import List, Dict,
|
16 |
|
17 |
import gradio as gr
|
18 |
-
from huggingface_hub import InferenceClient
|
19 |
-
from PyPDF2 import PdfReader
|
20 |
-
from smolagents import HfApiModel
|
|
|
|
|
21 |
|
22 |
# ------------------------------------------------------------------
|
23 |
# LLM setup – remote Qwen model via SmolAgents
|
24 |
# ------------------------------------------------------------------
|
25 |
llm = HfApiModel(
|
26 |
model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
|
27 |
-
max_tokens=2048,
|
28 |
temperature=0.5,
|
29 |
)
|
30 |
|
31 |
# ------------------------------------------------------------------
|
32 |
-
# Hugging
|
33 |
# ------------------------------------------------------------------
|
34 |
client = InferenceClient(token=os.getenv("HF_TOKEN", None))
|
35 |
|
36 |
# ------------------------------------------------------------------
|
37 |
# Language metadata and corresponding open TTS model IDs
|
38 |
-
# (MMS‑TTS supports 100+ langs but per‑lang repos have shorter ids)
|
39 |
# ------------------------------------------------------------------
|
40 |
LANG_INFO: Dict[str, Dict[str, str]] = {
|
41 |
"en": {"name": "English", "tts_model": "facebook/mms-tts-eng"},
|
@@ -44,19 +45,20 @@ LANG_INFO: Dict[str, Dict[str, str]] = {
|
|
44 |
"ur": {"name": "Urdu", "tts_model": "facebook/mms-tts-urd"},
|
45 |
"ne": {"name": "Nepali", "tts_model": "facebook/mms-tts-npi"},
|
46 |
}
|
|
|
47 |
LANG_CODE_BY_NAME = {info["name"]: code for code, info in LANG_INFO.items()}
|
48 |
|
49 |
# ------------------------------------------------------------------
|
50 |
-
# Prompt template (
|
51 |
# ------------------------------------------------------------------
|
52 |
PROMPT_TEMPLATE = textwrap.dedent(
|
53 |
"""
|
54 |
-
You are producing a lively two
|
55 |
-
Summarize the following lecture content into a dialogue of
|
56 |
Make it engaging: hosts ask questions, clarify ideas with analogies, and
|
57 |
wrap up with a concise recap. Preserve technical accuracy.
|
58 |
-
|
59 |
-
### Lecture
|
60 |
{content}
|
61 |
"""
|
62 |
)
|
@@ -64,120 +66,230 @@ PROMPT_TEMPLATE = textwrap.dedent(
|
|
64 |
# PDF helpers -------------------------------------------------------
|
65 |
|
66 |
def extract_pdf_text(pdf_path: str) -> str:
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
|
72 |
|
73 |
def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str:
|
74 |
words = text.split()
|
75 |
-
|
|
|
|
|
|
|
76 |
|
77 |
# ------------------------------------------------------------------
|
78 |
-
# TTS helper – chunk long text safely (HF endpoint ~
|
79 |
# ------------------------------------------------------------------
|
80 |
-
CHUNK_CHAR_LIMIT = 280 #
|
81 |
|
82 |
def _split_to_chunks(text: str, limit: int = CHUNK_CHAR_LIMIT) -> List[str]:
|
83 |
-
#
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
86 |
for sent in sentences:
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
current
|
|
|
91 |
else:
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
-
def synthesize_speech(text: str, model_id: str,
|
99 |
-
"""
|
100 |
chunks = _split_to_chunks(text)
|
101 |
-
|
|
|
|
|
|
|
102 |
for idx, chunk in enumerate(chunks):
|
|
|
103 |
try:
|
104 |
audio_bytes = client.text_to_speech(chunk, model=model_id)
|
105 |
except HubHTTPError as e:
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
108 |
part_path.write_bytes(audio_bytes)
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
return final_path
|
118 |
|
119 |
# ------------------------------------------------------------------
|
120 |
-
# Main pipeline
|
121 |
# ------------------------------------------------------------------
|
122 |
|
123 |
-
def generate_podcast(
|
|
|
|
|
124 |
if not selected_lang_names:
|
125 |
-
raise gr.Error("Please select at least one language.")
|
126 |
|
|
|
127 |
selected_codes = [LANG_CODE_BY_NAME[name] for name in selected_lang_names]
|
128 |
-
|
|
|
|
|
|
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
results.append(None)
|
138 |
-
continue
|
139 |
|
140 |
-
#
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
return results
|
150 |
|
151 |
# ------------------------------------------------------------------
|
152 |
-
# Gradio Interface
|
153 |
# ------------------------------------------------------------------
|
154 |
-
|
|
|
155 |
|
156 |
inputs = [
|
157 |
gr.File(label="Upload Lecture PDF", file_types=[".pdf"]),
|
158 |
gr.CheckboxGroup(
|
159 |
-
choices=
|
160 |
-
value=["English"],
|
161 |
label="Select podcast language(s) to generate",
|
162 |
),
|
163 |
]
|
164 |
|
|
|
165 |
outputs = [
|
166 |
-
gr.Audio(label=f"{
|
|
|
167 |
]
|
168 |
|
169 |
iface = gr.Interface(
|
170 |
fn=generate_podcast,
|
171 |
inputs=inputs,
|
172 |
outputs=outputs,
|
173 |
-
title="Lecture
|
174 |
description=(
|
175 |
-
"Upload a lecture PDF, choose language(s), and receive a two
|
176 |
-
"audio podcast. Dialogue
|
177 |
-
"
|
178 |
-
"automatically chunked
|
179 |
),
|
|
|
|
|
|
|
|
|
|
|
180 |
)
|
181 |
|
182 |
if __name__ == "__main__":
|
183 |
-
|
|
|
|
|
|
|
|
|
|
1 |
# =============================================================
|
2 |
+
# Hugging Face Space – Lecture → Podcast Generator (User-selectable Languages)
|
3 |
# =============================================================
|
4 |
+
# • **Text generation** – SmolAgents `HfApiModel` (Qwen/Qwen2.5-Coder-32B-Instruct)
|
5 |
+
# • **Speech synthesis** – `InferenceClient.text_to_speech`, chunk-safe
|
6 |
+
# (MMS-TTS for en/bn/ur/ne, mms-TTS-zho for zh). Long texts are split
|
7 |
+
# into ≤280-char chunks to stay within HF endpoint limits.
|
8 |
# -----------------------------------------------------------------
|
9 |
|
10 |
import os
|
|
|
12 |
import tempfile
|
13 |
import textwrap
|
14 |
from pathlib import Path
|
15 |
+
from typing import List, Dict, Optional
|
16 |
|
17 |
import gradio as gr
|
18 |
+
from huggingface_hub import InferenceClient, HubHTTPError
|
19 |
+
from PyPDF2 import PdfReader # For PDF processing
|
20 |
+
from smolagents import HfApiModel # For LLM interaction
|
21 |
+
from pydub import AudioSegment # Added for robust audio concatenation
|
22 |
+
from pydub.exceptions import CouldntDecodeError # Specific pydub error
|
23 |
|
24 |
# ------------------------------------------------------------------
|
25 |
# LLM setup – remote Qwen model via SmolAgents
|
26 |
# ------------------------------------------------------------------
|
27 |
llm = HfApiModel(
|
28 |
model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
|
29 |
+
max_tokens=2048, # Max tokens for the generated output dialogue
|
30 |
temperature=0.5,
|
31 |
)
|
32 |
|
33 |
# ------------------------------------------------------------------
|
34 |
+
# Hugging Face Inference API client (uses HF_TOKEN secret if provided)
|
35 |
# ------------------------------------------------------------------
|
36 |
client = InferenceClient(token=os.getenv("HF_TOKEN", None))
|
37 |
|
38 |
# ------------------------------------------------------------------
|
39 |
# Language metadata and corresponding open TTS model IDs
|
|
|
40 |
# ------------------------------------------------------------------
|
41 |
LANG_INFO: Dict[str, Dict[str, str]] = {
|
42 |
"en": {"name": "English", "tts_model": "facebook/mms-tts-eng"},
|
|
|
45 |
"ur": {"name": "Urdu", "tts_model": "facebook/mms-tts-urd"},
|
46 |
"ne": {"name": "Nepali", "tts_model": "facebook/mms-tts-npi"},
|
47 |
}
|
48 |
+
# For reverse lookup: language name to language code
|
49 |
LANG_CODE_BY_NAME = {info["name"]: code for code, info in LANG_INFO.items()}
|
50 |
|
51 |
# ------------------------------------------------------------------
|
52 |
+
# Prompt template (target ~300 words for LLM output)
|
53 |
# ------------------------------------------------------------------
|
54 |
PROMPT_TEMPLATE = textwrap.dedent(
|
55 |
"""
|
56 |
+
You are producing a lively two-host educational podcast in {lang_name}.
|
57 |
+
Summarize the following lecture content into a dialogue of **approximately 300 words**.
|
58 |
Make it engaging: hosts ask questions, clarify ideas with analogies, and
|
59 |
wrap up with a concise recap. Preserve technical accuracy.
|
60 |
+
|
61 |
+
### Lecture Content
|
62 |
{content}
|
63 |
"""
|
64 |
)
|
|
|
66 |
# PDF helpers -------------------------------------------------------
|
67 |
|
68 |
def extract_pdf_text(pdf_path: str) -> str:
|
69 |
+
try:
|
70 |
+
reader = PdfReader(pdf_path)
|
71 |
+
return "\n".join(page.extract_text() or "" for page in reader.pages)
|
72 |
+
except Exception as e:
|
73 |
+
# Raise a Gradio error to display it in the UI
|
74 |
+
raise gr.Error(f"Failed to process PDF: {e}")
|
75 |
|
76 |
+
|
77 |
+
# Increased slightly; Qwen models have large context windows. This is input *words*.
|
78 |
+
# Actual limit is in tokens. Qwen2.5-Coder-32B-Instruct context is 65536 tokens.
|
79 |
+
# 8000 words is still conservative. The prompt itself also consumes tokens.
|
80 |
+
TOKEN_LIMIT = 8000
|
81 |
|
82 |
|
83 |
def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str:
|
84 |
words = text.split()
|
85 |
+
if len(words) > limit:
|
86 |
+
gr.Warning(f"Input text was truncated from {len(words)} to {limit} words to fit LLM context window.")
|
87 |
+
return " ".join(words[:limit])
|
88 |
+
return text
|
89 |
|
90 |
# ------------------------------------------------------------------
|
91 |
+
# TTS helper – chunk long text safely (HF endpoint limit ~30s / 200-300 chars)
|
92 |
# ------------------------------------------------------------------
|
93 |
+
CHUNK_CHAR_LIMIT = 280 # Safe margin for MMS-TTS character limit per request
|
94 |
|
95 |
def _split_to_chunks(text: str, limit: int = CHUNK_CHAR_LIMIT) -> List[str]:
|
96 |
+
# Split on sentence boundaries (.!?) while respecting the character limit per chunk.
|
97 |
+
sentences_raw = re.split(r"(?<=[.!?])\s+", text.strip())
|
98 |
+
sentences = [s.strip() for s in sentences_raw if s.strip()] # Clean and filter empty sentences
|
99 |
+
|
100 |
+
if not sentences:
|
101 |
+
return []
|
102 |
+
|
103 |
+
chunks, current_chunk = [], ""
|
104 |
for sent in sentences:
|
105 |
+
# If current_chunk is empty, the first sentence always starts a new chunk.
|
106 |
+
# If current_chunk is not empty, check if adding the new sentence (plus a space) exceeds the limit.
|
107 |
+
if current_chunk and (len(current_chunk) + len(sent) + 1 > limit):
|
108 |
+
chunks.append(current_chunk) # Finalize the current chunk
|
109 |
+
current_chunk = sent # Start a new chunk with the current sentence
|
110 |
else:
|
111 |
+
# Append sentence to current_chunk (with a space if current_chunk is not empty)
|
112 |
+
current_chunk += (" " + sent) if current_chunk else sent
|
113 |
+
|
114 |
+
if current_chunk: # Add any remaining part as the last chunk
|
115 |
+
chunks.append(current_chunk)
|
116 |
+
|
117 |
+
return [chunk for chunk in chunks if chunk.strip()] # Ensure no empty chunks are returned
|
118 |
|
119 |
|
120 |
+
def synthesize_speech(text: str, model_id: str, lang_tmpdir: Path) -> Path:
|
121 |
+
"""Splits text into chunks, synthesizes speech for each, and concatenates them using pydub."""
|
122 |
chunks = _split_to_chunks(text)
|
123 |
+
if not chunks:
|
124 |
+
raise ValueError("Text resulted in no speakable chunks after splitting.")
|
125 |
+
|
126 |
+
audio_segments: List[AudioSegment] = []
|
127 |
for idx, chunk in enumerate(chunks):
|
128 |
+
gr.Info(f"Synthesizing audio for chunk {idx + 1}/{len(chunks)}...")
|
129 |
try:
|
130 |
audio_bytes = client.text_to_speech(chunk, model=model_id)
|
131 |
except HubHTTPError as e:
|
132 |
+
error_message = f"TTS request failed for chunk {idx+1}/{len(chunks)} ('{chunk[:30]}...'): {e}"
|
133 |
+
if "Input validation error: `inputs` must be non-empty" in str(e) and not chunk.strip():
|
134 |
+
gr.Warning(f"Skipping an apparently empty chunk for TTS that wasn't filtered: Chunk {idx+1}")
|
135 |
+
continue
|
136 |
+
raise RuntimeError(error_message) from e
|
137 |
+
|
138 |
+
part_path = lang_tmpdir / f"part_{idx}.flac" # Assuming TTS returns FLAC
|
139 |
part_path.write_bytes(audio_bytes)
|
140 |
+
|
141 |
+
try:
|
142 |
+
# Load the audio part using pydub.
|
143 |
+
# MMS TTS via HF Inference API usually returns WAV by default, but filename implies FLAC.
|
144 |
+
# If API returns WAV, use format="wav". If FLAC, format="flac".
|
145 |
+
# The original code implies FLAC, so we'll stick to that.
|
146 |
+
segment = AudioSegment.from_file(part_path, format="flac")
|
147 |
+
audio_segments.append(segment)
|
148 |
+
except CouldntDecodeError as e:
|
149 |
+
# This can happen if the audio data is not valid FLAC or is empty/corrupted.
|
150 |
+
raise RuntimeError(
|
151 |
+
f"Failed to decode audio chunk {idx+1} from {part_path}. "
|
152 |
+
f"Audio data might be corrupted, empty, or not in FLAC format. TTS Error: {e}"
|
153 |
+
) from e
|
154 |
+
|
155 |
+
if not audio_segments:
|
156 |
+
raise RuntimeError("No audio segments were successfully synthesized or decoded.")
|
157 |
+
|
158 |
+
# Concatenate all audio segments
|
159 |
+
combined_audio = sum(audio_segments, AudioSegment.empty()) # Efficient sum for pydub
|
160 |
+
|
161 |
+
final_path = lang_tmpdir / "podcast.flac"
|
162 |
+
combined_audio.export(final_path, format="flac")
|
163 |
+
|
164 |
return final_path
|
165 |
|
166 |
# ------------------------------------------------------------------
|
167 |
+
# Main pipeline function for Gradio
|
168 |
# ------------------------------------------------------------------
|
169 |
|
170 |
+
def generate_podcast(pdf_file_obj: Optional[gr.File], selected_lang_names: List[str]):
|
171 |
+
if not pdf_file_obj:
|
172 |
+
raise gr.Error("Please upload a PDF file.")
|
173 |
if not selected_lang_names:
|
174 |
+
raise gr.Error("Please select at least one language for the podcast.")
|
175 |
|
176 |
+
# Map selected language names back to their codes
|
177 |
selected_codes = [LANG_CODE_BY_NAME[name] for name in selected_lang_names]
|
178 |
+
|
179 |
+
# Initialize results map. Keys are lang codes, values will be audio file paths or None.
|
180 |
+
# This helps in populating results for selected languages only.
|
181 |
+
results_map: Dict[str, Optional[str]] = {code: None for code in LANG_INFO.keys()}
|
182 |
|
183 |
+
try:
|
184 |
+
with tempfile.TemporaryDirectory() as td:
|
185 |
+
tmpdir_base = Path(td) # Base temporary directory
|
186 |
+
|
187 |
+
gr.Info("Extracting text from PDF...")
|
188 |
+
lecture_raw = extract_pdf_text(pdf_file_obj.name) # .name is path to temp uploaded file
|
189 |
+
lecture_text = truncate_text(lecture_raw)
|
190 |
|
191 |
+
if not lecture_text.strip():
|
192 |
+
raise gr.Error("Could not extract any text from the PDF, or the PDF content is empty.")
|
|
|
|
|
193 |
|
194 |
+
for code in selected_codes: # Iterate only through user-selected languages
|
195 |
+
info = LANG_INFO[code]
|
196 |
+
lang_name = info["name"]
|
197 |
+
tts_model = info["tts_model"]
|
198 |
+
|
199 |
+
gr.Info(f"Processing for {lang_name}...")
|
200 |
+
|
201 |
+
# Create a language-specific subdirectory within the base temporary directory
|
202 |
+
lang_tmpdir = tmpdir_base / code
|
203 |
+
lang_tmpdir.mkdir(parents=True, exist_ok=True)
|
204 |
+
|
205 |
+
# 1️⃣ Generate dialogue using LLM
|
206 |
+
gr.Info(f"Generating dialogue for {lang_name}...")
|
207 |
+
prompt = PROMPT_TEMPLATE.format(lang_name=lang_name, content=lecture_text)
|
208 |
+
try:
|
209 |
+
dialogue: str = llm(prompt)
|
210 |
+
if not dialogue or not dialogue.strip():
|
211 |
+
gr.Warning(f"LLM returned empty dialogue for {lang_name}. Skipping TTS for this language.")
|
212 |
+
results_map[code] = None
|
213 |
+
continue # Move to the next selected language
|
214 |
+
except Exception as e:
|
215 |
+
gr.Error(f"Error generating dialogue for {lang_name}: {e}")
|
216 |
+
results_map[code] = None
|
217 |
+
continue
|
218 |
|
219 |
+
# 2️⃣ Synthesize speech from the dialogue (chunked and concatenated)
|
220 |
+
gr.Info(f"Synthesizing speech for {lang_name}...")
|
221 |
+
try:
|
222 |
+
tts_path = synthesize_speech(dialogue, tts_model, lang_tmpdir)
|
223 |
+
results_map[code] = str(tts_path) # Store the file path for this language
|
224 |
+
except ValueError as e: # From _split_to_chunks or synthesize_speech if no chunks
|
225 |
+
gr.Warning(f"Could not synthesize speech for {lang_name} (ValueError): {e}")
|
226 |
+
results_map[code] = None
|
227 |
+
except RuntimeError as e: # From synthesize_speech (TTS/pydub errors)
|
228 |
+
gr.Error(f"Error synthesizing speech for {lang_name} (RuntimeError): {e}")
|
229 |
+
results_map[code] = None
|
230 |
+
except Exception as e: # Catch any other unexpected errors during synthesis
|
231 |
+
gr.Error(f"Unexpected error during speech synthesis for {lang_name}: {e}")
|
232 |
+
results_map[code] = None
|
233 |
+
|
234 |
+
# Convert the results_map to an ordered list based on LANG_INFO keys.
|
235 |
+
# This ensures the returned list matches the order of Gradio output components.
|
236 |
+
final_results = [results_map[lang_code] for lang_code in LANG_INFO.keys()]
|
237 |
+
gr.Info("Podcast generation complete!")
|
238 |
+
return final_results
|
239 |
|
240 |
+
except gr.Error as e: # Re-raise Gradio-specific errors to be displayed in UI
|
241 |
+
raise e
|
242 |
+
except Exception as e: # Catch other unexpected errors during the process
|
243 |
+
# Log the full error for debugging purposes (e.g., to server logs)
|
244 |
+
import traceback
|
245 |
+
print("An unexpected error occurred in generate_podcast:")
|
246 |
+
traceback.print_exc()
|
247 |
+
# Show a generic error message in the UI
|
248 |
+
raise gr.Error(f"An unexpected server error occurred. Details: {str(e)[:100]}...")
|
249 |
|
|
|
250 |
|
251 |
# ------------------------------------------------------------------
|
252 |
+
# Gradio Interface Setup
|
253 |
# ------------------------------------------------------------------
|
254 |
+
# Ensure choices and outputs maintain consistent order related to LANG_INFO
|
255 |
+
language_names_ordered = [LANG_INFO[code]["name"] for code in LANG_INFO.keys()]
|
256 |
|
257 |
inputs = [
|
258 |
gr.File(label="Upload Lecture PDF", file_types=[".pdf"]),
|
259 |
gr.CheckboxGroup(
|
260 |
+
choices=language_names_ordered,
|
261 |
+
value=["English"], # Default language selection
|
262 |
label="Select podcast language(s) to generate",
|
263 |
),
|
264 |
]
|
265 |
|
266 |
+
# Create an gr.Audio output component for each language, in the defined order
|
267 |
outputs = [
|
268 |
+
gr.Audio(label=f"{LANG_INFO[code]['name']} Podcast", type="filepath")
|
269 |
+
for code in LANG_INFO.keys()
|
270 |
]
|
271 |
|
272 |
iface = gr.Interface(
|
273 |
fn=generate_podcast,
|
274 |
inputs=inputs,
|
275 |
outputs=outputs,
|
276 |
+
title="Lecture → Podcast Generator (Multi-Language)",
|
277 |
description=(
|
278 |
+
"Upload a lecture PDF, choose language(s), and receive a two-host "
|
279 |
+
"audio podcast for each selected language. Dialogue is generated by Qwen-32B, "
|
280 |
+
"and speech is synthesized using open MMS-TTS models via the HF Inference API. "
|
281 |
+
"Long texts are automatically chunked, and audio parts are robustly combined."
|
282 |
),
|
283 |
+
allow_flagging="never", # Set to "auto" or "manual" if you want to enable flagging
|
284 |
+
# Provide examples if you have sample PDFs accessible to the Gradio app
|
285 |
+
# examples=[
|
286 |
+
# ["path/to/sample_lecture.pdf", ["English", "Chinese"]],
|
287 |
+
# ]
|
288 |
)
|
289 |
|
290 |
if __name__ == "__main__":
|
291 |
+
# For local testing, ensure ffmpeg is installed and in PATH if pydub relies on it
|
292 |
+
# for FLAC conversion or other operations not handled by its built-in capabilities.
|
293 |
+
# The Hugging Face Inference API for MMS-TTS should ideally return FLAC directly
|
294 |
+
# if the model specified (e.g., facebook/mms-tts-eng) outputs that format.
|
295 |
+
iface.launch()
|