# ============================================================= # Hugging Face Space – Lecture → Podcast Generator (Gemini + HF TTS) # ============================================================= # • **Text generation** – Google Gemini API (via user-provided genai API Key) # • **Speech synthesis** – Hugging Face Inference API for TTS (via HF_TOKEN secret) # ----------------------------------------------------------------- import os import re import tempfile import textwrap from pathlib import Path from typing import List, Dict, Optional, Any import gradio as gr from PyPDF2 import PdfReader from pydub import AudioSegment from pydub.exceptions import CouldntDecodeError # For Hugging Face TTS from huggingface_hub import InferenceClient # For Google Gemini try: import google.generativeai as genai except ImportError: raise ImportError("Please install Google Generative AI SDK: pip install google-generativeai") # ------------------------------------------------------------------ # Hugging Face Inference API client for TTS (uses HF_TOKEN secret) # ------------------------------------------------------------------ hf_tts_client: Optional[InferenceClient] = None hf_token = os.getenv("HF_TOKEN") if hf_token: hf_tts_client = InferenceClient(token=hf_token) else: # This print will show in the Space logs if HF_TOKEN is missing print("WARNING: HF_TOKEN secret not found. Hugging Face TTS will not be available.") # ------------------------------------------------------------------ # Language metadata for Hugging Face MMS-TTS models # ------------------------------------------------------------------ LANG_INFO: Dict[str, Dict[str, str]] = { "en": {"name": "English", "tts_model": "facebook/mms-tts-eng"}, "bn": {"name": "Bangla", "tts_model": "facebook/mms-tts-ben"}, "zh": {"name": "Chinese", "tts_model": "facebook/mms-tts-zho"}, "ur": {"name": "Urdu", "tts_model": "facebook/mms-tts-urd"}, "ne": {"name": "Nepali", "tts_model": "facebook/mms-tts-npi"}, } LANG_CODE_BY_NAME = {info["name"]: code for code, info in LANG_INFO.items()} # ------------------------------------------------------------------ # Prompt template for Gemini # ------------------------------------------------------------------ PROMPT_TEMPLATE = textwrap.dedent( """ You are producing a lively two-host educational podcast in {lang_name}. Summarize the following lecture content into a dialogue of **approximately 300 words**. Make it engaging: hosts ask questions, clarify ideas with analogies, and wrap up with a concise recap. Preserve technical accuracy. Use Markdown for host names (e.g., **Host 1:**). ### Lecture Content {content} """ ) # PDF helpers (unchanged) ------------------------------------------- def extract_pdf_text(pdf_path: str) -> str: try: reader = PdfReader(pdf_path) return "\n".join(page.extract_text() or "" for page in reader.pages) except Exception as e: raise gr.Error(f"Failed to process PDF: {e}") TOKEN_LIMIT = 8000 def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str: words = text.split() if len(words) > limit: gr.Warning(f"Input text was truncated from {len(words)} to {limit} words to fit LLM context window.") return " ".join(words[:limit]) return text # ------------------------------------------------------------------ # TTS helper using Hugging Face Inference API # ------------------------------------------------------------------ CHUNK_CHAR_LIMIT_HF = 280 def _split_to_chunks_hf(text: str, limit: int = CHUNK_CHAR_LIMIT_HF) -> List[str]: sentences_raw = re.split(r"(?<=[.!?])\s+", text.strip()) sentences = [s.strip() for s in sentences_raw if s.strip()] if not sentences: return [] chunks, current_chunk = [], "" for sent in sentences: if current_chunk and (len(current_chunk) + len(sent) + 1 > limit): chunks.append(current_chunk) current_chunk = sent else: current_chunk += (" " + sent) if current_chunk else sent if current_chunk: chunks.append(current_chunk) return [chunk for chunk in chunks if chunk.strip()] def synthesize_speech_hf( text: str, hf_model_id: str, lang_tmpdir: Path, tts_client: InferenceClient ) -> Path: chunks = _split_to_chunks_hf(text) if not chunks: raise ValueError("Text resulted in no speakable chunks after splitting.") audio_segments: List[AudioSegment] = [] for idx, chunk in enumerate(chunks): gr.Info(f"Synthesizing audio for chunk {idx + 1}/{len(chunks)} with HF TTS ({hf_model_id})...") try: audio_bytes = tts_client.text_to_speech(chunk, model=hf_model_id) except HubHTTPError as e: error_message = f"HF TTS request failed for chunk {idx+1} ('{chunk[:30]}...'): {e}" if "Input validation error: `inputs` must be non-empty" in str(e) and not chunk.strip(): gr.Warning(f"Skipping an apparently empty chunk for HF TTS: Chunk {idx+1}") continue raise RuntimeError(error_message) from e except Exception as e: raise RuntimeError(f"HF TTS client error for chunk {idx+1}: {e}") from e part_path = lang_tmpdir / f"part_{idx}.flac" part_path.write_bytes(audio_bytes) try: segment = AudioSegment.from_file(part_path, format="flac") audio_segments.append(segment) except CouldntDecodeError as e: raise RuntimeError(f"Failed to decode FLAC audio chunk {idx+1} from {part_path}. Error: {e}") from e if not audio_segments: raise RuntimeError("No audio segments were successfully synthesized or decoded.") combined_audio = sum(audio_segments, AudioSegment.empty()) final_path = lang_tmpdir / "podcast_audio.flac" combined_audio.export(final_path, format="flac") return final_path # ------------------------------------------------------------------ # Main pipeline function for Gradio # ------------------------------------------------------------------ def generate_podcast( gemini_api_key_from_ui: Optional[str], # Explicitly named to show source pdf_file_obj: Optional[gr.File], selected_lang_names: List[str] ) -> List[Optional[Any]]: if not gemini_api_key_from_ui: # Check the key provided from the UI input raise gr.Error("Please enter your Google AI Studio API Key for Gemini in the input field.") if not pdf_file_obj: raise gr.Error("Please upload a PDF file.") if not selected_lang_names: raise gr.Error("Please select at least one language for the podcast.") # Configure Gemini API using the key directly from the UI input try: genai.configure(api_key=gemini_api_key_from_ui) gr.Info("Gemini API configured successfully with the provided key.") except Exception as e: raise gr.Error(f"Failed to configure Gemini API with the provided key. Please check your API key. Error: {e}") # Check if HF TTS client is available (HF_TOKEN was provided as a secret) if not hf_tts_client: gr.Warning( # Changed to gr.Warning to allow script generation if TTS fails to init "Hugging Face TTS client is not available (HF_TOKEN secret might be missing or invalid). " "Speech synthesis will be skipped, but script generation will be attempted." ) # Note: Script generation can still proceed, TTS will be skipped later if client is None. selected_codes = [LANG_CODE_BY_NAME[name] for name in selected_lang_names] results_data: Dict[str, Dict[str, Optional[str]]] = { code: {"audio": None, "script_text": None, "script_file": None} for code in LANG_INFO.keys() } try: with tempfile.TemporaryDirectory() as td: tmpdir_base = Path(td) gr.Info("Extracting text from PDF...") lecture_raw = extract_pdf_text(pdf_file_obj.name) lecture_text = truncate_text(lecture_raw) if not lecture_text.strip(): raise gr.Error("Could not extract any text from the PDF, or the PDF content is empty.") # Initialize Gemini model (e.g., 'gemini-1.5-flash-latest' or 'gemini-pro') # This happens after genai.configure has been called. try: gemini_model = genai.GenerativeModel('gemini-1.5-flash-latest') # Or 'gemini-pro' except Exception as e: raise gr.Error(f"Failed to initialize Gemini model. This might be due to an invalid API key or API access issues. Error: {e}") for code in selected_codes: info = LANG_INFO[code] lang_name = info["name"] hf_tts_model_id = info["tts_model"] gr.Info(f"Processing for {lang_name}...") lang_tmpdir = tmpdir_base / code lang_tmpdir.mkdir(parents=True, exist_ok=True) dialogue: Optional[str] = None gr.Info(f"Generating dialogue for {lang_name} with Gemini...") prompt_for_gemini = PROMPT_TEMPLATE.format(lang_name=lang_name, content=lecture_text) try: # The gemini_model is initialized using the API key from genai.configure() response = gemini_model.generate_content(prompt_for_gemini) dialogue_raw = response.text if not dialogue_raw or not dialogue_raw.strip(): gr.Warning(f"Gemini returned empty dialogue for {lang_name}. Skipping.") continue dialogue = dialogue_raw results_data[code]["script_text"] = dialogue script_file_path = lang_tmpdir / f"podcast_script_{code}.txt" script_file_path.write_text(dialogue, encoding="utf-8") results_data[code]["script_file"] = str(script_file_path) except Exception as e: # Check if the error indicates an API key issue from Gemini if "API_KEY_INVALID" in str(e) or "permission" in str(e).lower(): raise gr.Error(f"Gemini API Key error for {lang_name}: {e}. Please verify your API key and its permissions.") gr.Error(f"Error generating dialogue with Gemini for {lang_name}: {e}") continue if dialogue: if hf_tts_client: # Only attempt TTS if client is available gr.Info(f"Synthesizing speech for {lang_name} with Hugging Face TTS ({hf_tts_model_id})...") try: tts_path = synthesize_speech_hf(dialogue, hf_tts_model_id, lang_tmpdir, hf_tts_client) results_data[code]["audio"] = str(tts_path) except ValueError as e: # From _split_to_chunks or synthesize_speech if no chunks gr.Warning(f"Could not synthesize speech for {lang_name} (ValueError): {e}") except RuntimeError as e: # From synthesize_speech (TTS/pydub errors) gr.Error(f"Error synthesizing speech for {lang_name} (RuntimeError): {e}") except Exception as e: # Catch any other unexpected errors during synthesis gr.Error(f"Unexpected error during speech synthesis for {lang_name}: {e}") else: gr.Info(f"HF TTS client not available. Skipping speech synthesis for {lang_name}.") final_ordered_results: List[Optional[Any]] = [] for code_key in LANG_INFO.keys(): lang_output_data = results_data[code_key] final_ordered_results.append(lang_output_data["audio"]) final_ordered_results.append(lang_output_data["script_text"]) final_ordered_results.append(lang_output_data["script_file"]) gr.Info("Podcast generation complete!") return final_ordered_results except gr.Error as e: # Re-raise Gradio-specific errors to be displayed in UI raise e except Exception as e: # Catch other unexpected errors during the process import traceback print("An unexpected error occurred in generate_podcast:") traceback.print_exc() raise gr.Error(f"An unexpected server error occurred. Details: {str(e)[:100]}...") # ------------------------------------------------------------------ # Gradio Interface Setup # ------------------------------------------------------------------ language_names_ordered = [LANG_INFO[code]["name"] for code in LANG_INFO.keys()] inputs = [ gr.Textbox( label="Enter your Google AI Studio API Key (for Gemini text generation)", type="password", placeholder="Paste your Gemini API key here", # value=os.getenv("GEMINI_API_KEY_FOR_DEV") # Optional: for local dev default, remove for deployment ), gr.File(label="Upload Lecture PDF", file_types=[".pdf"]), gr.CheckboxGroup( choices=language_names_ordered, value=["English"], # Default language selection label="Select podcast language(s) to generate", ), ] outputs = [] for code in LANG_INFO.keys(): info = LANG_INFO[code] lang_name = info["name"] outputs.append(gr.Audio(label=f"{lang_name} Podcast (.flac)", type="filepath")) outputs.append(gr.Markdown(label=f"{lang_name} Script")) outputs.append(gr.File(label=f"Download {lang_name} Script (.txt)", type="filepath")) iface = gr.Interface( fn=generate_podcast, inputs=inputs, outputs=outputs, title="Lecture → Podcast & Script (Gemini Text + HF Speech)", description=( "**SETUP:**\n" "1. **Gemini API Key**: Enter your Google AI Studio API Key in the field below for text generation.\n" "2. **Hugging Face Token (for Speech)**: For Text-to-Speech, ensure you have a Hugging Face Token. " "In this Hugging Face Space, go to 'Settings' -> 'Secrets' and add a new secret named `HF_TOKEN`. " "Paste your Hugging Face token as its value.\n\n" "Upload a lecture PDF, choose language(s), and receive an audio podcast " "and its script. Dialogue by Google Gemini, speech by Hugging Face MMS-TTS." ), allow_flagging="never", ) if __name__ == "__main__": # For local testing of HF_TOKEN, you can set it as an environment variable: # os.environ["HF_TOKEN"] = "your_hf_token_here" if not os.getenv("HF_TOKEN"): print("Reminder: For local testing with TTS, set the HF_TOKEN environment variable.") # The Gemini API key will be taken from the UI input. # You could add a default value for local testing to the gr.Textbox `value` argument if desired. # e.g. value=os.getenv("GEMINI_API_KEY_FOR_DEV") iface.launch()