Spaces:
Sleeping
Sleeping
# app.py (for your Hugging Face Space/Model Repo: Hajorda/keduClassifier) | |
import gradio as gr | |
import torch | |
import pytorch_lightning as pl | |
from timm import create_model | |
import torch.nn as nn | |
from box import Box | |
import albumentations as A | |
from albumentations.pytorch.transforms import ToTensorV2 | |
import cv2 | |
import pickle | |
from PIL import Image | |
import numpy as np | |
import os | |
# import requests # Commenting out as Giphy API key is not used by default | |
import random # For random choice of keywords if you enable Giphy later | |
from huggingface_hub import hf_hub_download | |
# --- Model and Repository Configuration --- | |
# This should exactly match your model repository on Hugging Face | |
HF_USERNAME = "Hajorda" | |
HF_MODEL_NAME = "keduClassifier" # CORRECTED: Matches your repo name | |
REPO_ID = f"{HF_USERNAME}/{HF_MODEL_NAME}" | |
# --- Inference Configuration --- | |
cfg_dict_for_inference = { | |
'model_name': 'swin_tiny_patch4_window7_224', # Should match your trained model | |
'dropout_backbone': 0.1, # Should match your trained model | |
'dropout_fc': 0.2, # Should match your trained model | |
'img_size': (224, 224), | |
'num_classes': 37, # This MUST match the number of classes your model was trained on | |
} | |
cfg_inference = Box(cfg_dict_for_inference) | |
# --- PyTorch Lightning Model Definition --- | |
class PetBreedModel(pl.LightningModule): | |
def __init__(self, cfg: Box): | |
super().__init__() | |
self.cfg = cfg | |
self.backbone = create_model( | |
self.cfg.model_name, pretrained=False, num_classes=0, | |
in_chans=3, drop_rate=self.cfg.dropout_backbone | |
) | |
# Ensure img_size is a tuple for unpacking | |
h, w = self.cfg.img_size if isinstance(self.cfg.img_size, tuple) else (224, 224) | |
dummy_input = torch.randn(1, 3, h, w) | |
with torch.no_grad(): | |
num_features = self.backbone(dummy_input).shape[-1] | |
self.fc = nn.Sequential( | |
nn.Linear(num_features, num_features // 2), nn.ReLU(), | |
nn.Dropout(self.cfg.dropout_fc), | |
nn.Linear(num_features // 2, self.cfg.num_classes) | |
) | |
def forward(self, x): | |
features = self.backbone(x) | |
output = self.fc(features) | |
return output | |
# --- Helper Functions to Load Assets from Hugging Face Hub --- | |
def load_model_from_hf_for_space(repo_id=REPO_ID, ckpt_filename="pytorch_model.ckpt"): | |
model_path = hf_hub_download(repo_id=repo_id, filename=ckpt_filename) | |
if cfg_inference.num_classes is None: # Should be set by cfg_dict_for_inference | |
raise ValueError("num_classes must be set in cfg_inference to load the model for Gradio.") | |
# Pass the cfg for the model structure | |
loaded_model = PetBreedModel.load_from_checkpoint(model_path, cfg=cfg_inference, strict=False) | |
loaded_model.eval() | |
return loaded_model | |
def load_label_encoder_from_hf_for_space(repo_id=REPO_ID, le_filename="label_encoder.pkl"): | |
le_path = hf_hub_download(repo_id=repo_id, filename=le_filename) | |
with open(le_path, 'rb') as f: | |
label_encoder = pickle.load(f) | |
return label_encoder | |
# --- Load Model and Label Encoder (once at app startup) --- | |
print(f"Loading model and label encoder from repository: {REPO_ID}") | |
try: | |
model = load_model_from_hf_for_space() | |
label_encoder = load_label_encoder_from_hf_for_space() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
print(f"Model and label encoder loaded successfully. Using device: {device}") | |
except Exception as e: | |
print(f"Error loading model or label encoder: {e}") | |
# If loading fails, the Gradio app might not work. | |
# Consider how to handle this, e.g., display an error in the UI. | |
model = None | |
label_encoder = None | |
device = "cpu" | |
# --- Funny GIF Logic --- | |
# funny_cat_keywords = ["funny cat", "silly cat", "cat meme", "derp cat"] | |
# GIPHY_API_KEY = "YOUR_GIPHY_API_KEY" # Optional | |
def get_funny_cat_gif(breed_name): | |
# Using a predefined list for simplicity and to avoid API key requirements | |
predefined_gifs = { | |
"abyssinian": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExaWN4bDNzNWVzM2VqNHE4Ym5zN2ZzZHF0Zzh0bGRqZzRjMnhsZW5pZCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/3oriO0OEd9QIDdllqo/giphy.gif", | |
"american bulldog": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExbHgzYXB6N3g5NThnaXU2eWR2aHljOXg3NjMzbGJwNmF6NmxkdXU2ayZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/1simplexLKhMTqI/giphy.gif", # Example for a dog breed | |
"bengal": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExbnl0Z2J6cWtub29qdjFlajQ4ZXZ6czY2ZDY0cW53b3I2amI0OHhoYSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/BK1 SANT0sqq1q/giphy.gif", | |
"birman": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExZ3Q4NXZmMjQ1azE2dHZ2czZnNnBoNThkZ3FkY2Z0c3hqNjVqMTdhaSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/catdogcessing/giphy.gif", | |
"bombay": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExc3N5b2c3MmgwN3JzbjRkYmdocjdhcDc3ejExZGZqZmZtbDBxdXRrcSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/q1MeAPDDMb43K/giphy.gif", | |
"british shorthair": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExYTY3NG96bTc0bnFyOGNkaXBwcTYwdGZzZ3JwY2pscGNmbmZydG05eSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/Lq0h93752f6J9tij39/giphy.gif", | |
"egyptian mau": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExbjZ6dmJvaDhsb3N4ZXdkOXNrbzRkYnJmMHo3MnE2bWJocjU0Mm5jayZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/3o7ZeLambpFh3TS2ZO/giphy.gif", | |
"maine coon": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExd3F6NWoyanFmY2xmcHBtMHRhMXAzaXZrYnJia3UxcDRtcXFsYjE2NSZlcD12MV9pbnRlcm5hbF_naWZfYnlfaWQmY3Q9Zw/MDrmyLuUh9A1a/giphy.gif", | |
"persian": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExYW12cDRuc3ZtZ2ZpN2Q2cjdwMHBmb2F3MzJ5d295dGRscG9hdmFpNiZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/uE4gVmbjaZmmY/giphy.gif", | |
"ragdoll": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExczZqNWs2ZWU1ZTVobXVxdTZrN2hzcGZoaDVrYnNpZGF4a3FpM3N4aCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/ObTT5h01Xo43C/giphy.gif", | |
"russian blue": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExc3NqcHgzcnVldjA2MnQxc3oyZnp5a2R1eXZxY21hZTN4NHAwd2NyNyZlcD12MV9pbnRlcm5hbF_naWZfYnlfaWQmY3Q9Zw/114ZzmjHizvdsY/giphy.gif", | |
"siamese": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExa3g0dHZtZmRncWN0cnZkNnVnMGRtYjN2ajZ2d3o1cHZtaW50ZHQ5ayZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/ICOgUNjpvO0PC/giphy.gif", | |
"sphynx": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExcXZjdzFybXh0ZW53OHI4ZWQxazNtb3N4dDNzOGJrdmZrdXFzbnUyZSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/mlvseq9yvZhba/giphy.gif", | |
"default": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExNWMwNnU4NW9nZTV5c3Z0eThsOHhsOWN0Nnh0a3VzbjFxeGU0bjFuNiZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/BzyTuYCmvSORqs1ABM/giphy.gif" | |
} | |
# Normalize breed name for lookup | |
normalized_breed_name = breed_name.lower().replace(" ", "_").replace("-", "_") | |
return predefined_gifs.get(normalized_breed_name, predefined_gifs["default"]) | |
# --- Gradio Interface Function --- | |
def classify_cat_breed(image_input_bgr): # Gradio image is usually BGR numpy array | |
if model is None or label_encoder is None: | |
return ("Model not loaded. Please check logs.", "Error: Model components failed to load.", "") | |
# Convert BGR to RGB | |
img_rgb = cv2.cvtColor(image_input_bgr, cv2.COLOR_BGR2RGB) | |
h, w = cfg_inference.img_size | |
transforms_gradio = A.Compose([ | |
A.Resize(height=h, width=w), | |
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
ToTensorV2(), | |
]) | |
input_tensor = transforms_gradio(image=img_rgb)['image'].unsqueeze(0).to(device) | |
with torch.no_grad(): | |
logits = model(input_tensor) | |
probabilities = torch.softmax(logits, dim=1) | |
confidence, predicted_idx = torch.max(probabilities, dim=1) | |
predicted_breed_id = predicted_idx.item() | |
predicted_breed_name = label_encoder.inverse_transform([predicted_breed_id])[0] | |
conf_score = confidence.item() | |
funny_message = f"My AI brain (all {conf_score*100:.1f}% of it that's sure) says this purrfect creature is a **{predicted_breed_name}**!" | |
if conf_score < 0.5: | |
funny_message += " ...Though, to be honest, it could also be a very fluffy potato. My circuits are confused! π₯" | |
elif conf_score < 0.8: | |
funny_message += " Pretty confident, but if it starts barking, don't blame me! π" | |
else: | |
funny_message += " Absolutely magnificent! A textbook example, if cats read textbooks. π§" | |
gif_url = get_funny_cat_gif(predicted_breed_name) | |
return ( | |
f"**{predicted_breed_name.title()}** (Confidence: {conf_score*100:.2f}%)", | |
funny_message, | |
gif_url | |
) | |
# --- Define the Gradio Interface --- | |
title = "πΌ KEDU's Kompletely Kooky Kat (and K9?) Klassifier! πΆ" | |
description = ( | |
"Upload a pic of your furry overlord (cat OR dog from the Oxford-IIIT set!), and I'll " | |
"attempt a hilariously 'accurate' breed guess. Powered by Swin Transformers and an " | |
"unhealthy obsession with pets. Results may vary, giggles guaranteed!" | |
) | |
# Corrected article link | |
article_link_href = f"https://huggingface.co/{REPO_ID}" # Uses the correctly defined REPO_ID | |
article = f"<p style='text-align: center'>Model based on Swin Transformer, fine-tuned on the Oxford-IIIT Pet Dataset. <a href='{article_link_href}' target='_blank'>Model Card & Files</a></p>" | |
# Add some example images to your repo and reference them here | |
# For example, if you add 'cat_example.jpg' and 'dog_example.jpg' to your HF repo | |
example_images = [ | |
["cat1.webp"], # You'll need to upload this image to your HF repo | |
["cat2.webp"], # You'll need to upload this image to your HF repo | |
["cat3.webp"], | |
] | |
# Check if example files exist, if not, provide placeholders or skip examples | |
# This check would ideally be done by trying to download them if they are remote URLs | |
# For local paths in a repo, Gradio handles it if the files are present. | |
iface = gr.Interface( | |
fn=classify_cat_breed, | |
inputs=gr.Image(type="numpy", label="Upload Your Pet's Most Glamorous Shot! πΈ"), | |
outputs=[ | |
gr.Textbox(label="π§ The AI's Verdict Is... (Breed & Confidence)"), | |
gr.Markdown(label="π¬ AI's Deep (and Silly) Thoughts..."), # Markdown for bolding | |
gr.Image(type="filepath", label="π Celebration/Confusion GIF! π") | |
], | |
title=title, | |
description=description, | |
article=article, | |
# examples=example_images, # Uncomment if you add example images to your repo | |
theme=gr.themes.Monochrome(), # Trying a different theme | |
allow_flagging='never' | |
) | |
if __name__ == "__main__": | |
# When running locally (e.g., python app.py), this will launch the server. | |
# On Hugging Face Spaces, Spaces handles the launch. | |
iface.launch() |