keduClassifier / app.py
Hajorda's picture
Update app.py
1da39d3 verified
# app.py (for your Hugging Face Space/Model Repo: Hajorda/keduClassifier)
import gradio as gr
import torch
import pytorch_lightning as pl
from timm import create_model
import torch.nn as nn
from box import Box
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2
import cv2
import pickle
from PIL import Image
import numpy as np
import os
# import requests # Commenting out as Giphy API key is not used by default
import random # For random choice of keywords if you enable Giphy later
from huggingface_hub import hf_hub_download
# --- Model and Repository Configuration ---
# This should exactly match your model repository on Hugging Face
HF_USERNAME = "Hajorda"
HF_MODEL_NAME = "keduClassifier" # CORRECTED: Matches your repo name
REPO_ID = f"{HF_USERNAME}/{HF_MODEL_NAME}"
# --- Inference Configuration ---
cfg_dict_for_inference = {
'model_name': 'swin_tiny_patch4_window7_224', # Should match your trained model
'dropout_backbone': 0.1, # Should match your trained model
'dropout_fc': 0.2, # Should match your trained model
'img_size': (224, 224),
'num_classes': 37, # This MUST match the number of classes your model was trained on
}
cfg_inference = Box(cfg_dict_for_inference)
# --- PyTorch Lightning Model Definition ---
class PetBreedModel(pl.LightningModule):
def __init__(self, cfg: Box):
super().__init__()
self.cfg = cfg
self.backbone = create_model(
self.cfg.model_name, pretrained=False, num_classes=0,
in_chans=3, drop_rate=self.cfg.dropout_backbone
)
# Ensure img_size is a tuple for unpacking
h, w = self.cfg.img_size if isinstance(self.cfg.img_size, tuple) else (224, 224)
dummy_input = torch.randn(1, 3, h, w)
with torch.no_grad():
num_features = self.backbone(dummy_input).shape[-1]
self.fc = nn.Sequential(
nn.Linear(num_features, num_features // 2), nn.ReLU(),
nn.Dropout(self.cfg.dropout_fc),
nn.Linear(num_features // 2, self.cfg.num_classes)
)
def forward(self, x):
features = self.backbone(x)
output = self.fc(features)
return output
# --- Helper Functions to Load Assets from Hugging Face Hub ---
def load_model_from_hf_for_space(repo_id=REPO_ID, ckpt_filename="pytorch_model.ckpt"):
model_path = hf_hub_download(repo_id=repo_id, filename=ckpt_filename)
if cfg_inference.num_classes is None: # Should be set by cfg_dict_for_inference
raise ValueError("num_classes must be set in cfg_inference to load the model for Gradio.")
# Pass the cfg for the model structure
loaded_model = PetBreedModel.load_from_checkpoint(model_path, cfg=cfg_inference, strict=False)
loaded_model.eval()
return loaded_model
def load_label_encoder_from_hf_for_space(repo_id=REPO_ID, le_filename="label_encoder.pkl"):
le_path = hf_hub_download(repo_id=repo_id, filename=le_filename)
with open(le_path, 'rb') as f:
label_encoder = pickle.load(f)
return label_encoder
# --- Load Model and Label Encoder (once at app startup) ---
print(f"Loading model and label encoder from repository: {REPO_ID}")
try:
model = load_model_from_hf_for_space()
label_encoder = load_label_encoder_from_hf_for_space()
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
print(f"Model and label encoder loaded successfully. Using device: {device}")
except Exception as e:
print(f"Error loading model or label encoder: {e}")
# If loading fails, the Gradio app might not work.
# Consider how to handle this, e.g., display an error in the UI.
model = None
label_encoder = None
device = "cpu"
# --- Funny GIF Logic ---
# funny_cat_keywords = ["funny cat", "silly cat", "cat meme", "derp cat"]
# GIPHY_API_KEY = "YOUR_GIPHY_API_KEY" # Optional
def get_funny_cat_gif(breed_name):
# Using a predefined list for simplicity and to avoid API key requirements
predefined_gifs = {
"abyssinian": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExaWN4bDNzNWVzM2VqNHE4Ym5zN2ZzZHF0Zzh0bGRqZzRjMnhsZW5pZCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/3oriO0OEd9QIDdllqo/giphy.gif",
"american bulldog": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExbHgzYXB6N3g5NThnaXU2eWR2aHljOXg3NjMzbGJwNmF6NmxkdXU2ayZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/1simplexLKhMTqI/giphy.gif", # Example for a dog breed
"bengal": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExbnl0Z2J6cWtub29qdjFlajQ4ZXZ6czY2ZDY0cW53b3I2amI0OHhoYSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/BK1 SANT0sqq1q/giphy.gif",
"birman": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExZ3Q4NXZmMjQ1azE2dHZ2czZnNnBoNThkZ3FkY2Z0c3hqNjVqMTdhaSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/catdogcessing/giphy.gif",
"bombay": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExc3N5b2c3MmgwN3JzbjRkYmdocjdhcDc3ejExZGZqZmZtbDBxdXRrcSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/q1MeAPDDMb43K/giphy.gif",
"british shorthair": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExYTY3NG96bTc0bnFyOGNkaXBwcTYwdGZzZ3JwY2pscGNmbmZydG05eSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/Lq0h93752f6J9tij39/giphy.gif",
"egyptian mau": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExbjZ6dmJvaDhsb3N4ZXdkOXNrbzRkYnJmMHo3MnE2bWJocjU0Mm5jayZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/3o7ZeLambpFh3TS2ZO/giphy.gif",
"maine coon": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExd3F6NWoyanFmY2xmcHBtMHRhMXAzaXZrYnJia3UxcDRtcXFsYjE2NSZlcD12MV9pbnRlcm5hbF_naWZfYnlfaWQmY3Q9Zw/MDrmyLuUh9A1a/giphy.gif",
"persian": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExYW12cDRuc3ZtZ2ZpN2Q2cjdwMHBmb2F3MzJ5d295dGRscG9hdmFpNiZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/uE4gVmbjaZmmY/giphy.gif",
"ragdoll": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExczZqNWs2ZWU1ZTVobXVxdTZrN2hzcGZoaDVrYnNpZGF4a3FpM3N4aCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/ObTT5h01Xo43C/giphy.gif",
"russian blue": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExc3NqcHgzcnVldjA2MnQxc3oyZnp5a2R1eXZxY21hZTN4NHAwd2NyNyZlcD12MV9pbnRlcm5hbF_naWZfYnlfaWQmY3Q9Zw/114ZzmjHizvdsY/giphy.gif",
"siamese": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExa3g0dHZtZmRncWN0cnZkNnVnMGRtYjN2ajZ2d3o1cHZtaW50ZHQ5ayZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/ICOgUNjpvO0PC/giphy.gif",
"sphynx": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExcXZjdzFybXh0ZW53OHI4ZWQxazNtb3N4dDNzOGJrdmZrdXFzbnUyZSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/mlvseq9yvZhba/giphy.gif",
"default": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExNWMwNnU4NW9nZTV5c3Z0eThsOHhsOWN0Nnh0a3VzbjFxeGU0bjFuNiZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/BzyTuYCmvSORqs1ABM/giphy.gif"
}
# Normalize breed name for lookup
normalized_breed_name = breed_name.lower().replace(" ", "_").replace("-", "_")
return predefined_gifs.get(normalized_breed_name, predefined_gifs["default"])
# --- Gradio Interface Function ---
def classify_cat_breed(image_input_bgr): # Gradio image is usually BGR numpy array
if model is None or label_encoder is None:
return ("Model not loaded. Please check logs.", "Error: Model components failed to load.", "")
# Convert BGR to RGB
img_rgb = cv2.cvtColor(image_input_bgr, cv2.COLOR_BGR2RGB)
h, w = cfg_inference.img_size
transforms_gradio = A.Compose([
A.Resize(height=h, width=w),
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
ToTensorV2(),
])
input_tensor = transforms_gradio(image=img_rgb)['image'].unsqueeze(0).to(device)
with torch.no_grad():
logits = model(input_tensor)
probabilities = torch.softmax(logits, dim=1)
confidence, predicted_idx = torch.max(probabilities, dim=1)
predicted_breed_id = predicted_idx.item()
predicted_breed_name = label_encoder.inverse_transform([predicted_breed_id])[0]
conf_score = confidence.item()
funny_message = f"My AI brain (all {conf_score*100:.1f}% of it that's sure) says this purrfect creature is a **{predicted_breed_name}**!"
if conf_score < 0.5:
funny_message += " ...Though, to be honest, it could also be a very fluffy potato. My circuits are confused! πŸ₯”"
elif conf_score < 0.8:
funny_message += " Pretty confident, but if it starts barking, don't blame me! 😜"
else:
funny_message += " Absolutely magnificent! A textbook example, if cats read textbooks. 🧐"
gif_url = get_funny_cat_gif(predicted_breed_name)
return (
f"**{predicted_breed_name.title()}** (Confidence: {conf_score*100:.2f}%)",
funny_message,
gif_url
)
# --- Define the Gradio Interface ---
title = "😼 KEDU's Kompletely Kooky Kat (and K9?) Klassifier! 🐢"
description = (
"Upload a pic of your furry overlord (cat OR dog from the Oxford-IIIT set!), and I'll "
"attempt a hilariously 'accurate' breed guess. Powered by Swin Transformers and an "
"unhealthy obsession with pets. Results may vary, giggles guaranteed!"
)
# Corrected article link
article_link_href = f"https://huggingface.co/{REPO_ID}" # Uses the correctly defined REPO_ID
article = f"<p style='text-align: center'>Model based on Swin Transformer, fine-tuned on the Oxford-IIIT Pet Dataset. <a href='{article_link_href}' target='_blank'>Model Card & Files</a></p>"
# Add some example images to your repo and reference them here
# For example, if you add 'cat_example.jpg' and 'dog_example.jpg' to your HF repo
example_images = [
["cat1.webp"], # You'll need to upload this image to your HF repo
["cat2.webp"], # You'll need to upload this image to your HF repo
["cat3.webp"],
]
# Check if example files exist, if not, provide placeholders or skip examples
# This check would ideally be done by trying to download them if they are remote URLs
# For local paths in a repo, Gradio handles it if the files are present.
iface = gr.Interface(
fn=classify_cat_breed,
inputs=gr.Image(type="numpy", label="Upload Your Pet's Most Glamorous Shot! πŸ“Έ"),
outputs=[
gr.Textbox(label="🧐 The AI's Verdict Is... (Breed & Confidence)"),
gr.Markdown(label="πŸ’¬ AI's Deep (and Silly) Thoughts..."), # Markdown for bolding
gr.Image(type="filepath", label="πŸŽ‰ Celebration/Confusion GIF! πŸŽ‰")
],
title=title,
description=description,
article=article,
# examples=example_images, # Uncomment if you add example images to your repo
theme=gr.themes.Monochrome(), # Trying a different theme
allow_flagging='never'
)
if __name__ == "__main__":
# When running locally (e.g., python app.py), this will launch the server.
# On Hugging Face Spaces, Spaces handles the launch.
iface.launch()