Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py (for a Hugging Face Space using Gradio)
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import pytorch_lightning as pl
|
5 |
+
from timm import create_model
|
6 |
+
import torch.nn as nn
|
7 |
+
from box import Box
|
8 |
+
import albumentations as A
|
9 |
+
from albumentations.pytorch.transforms import ToTensorV2
|
10 |
+
import cv2
|
11 |
+
import pickle
|
12 |
+
from PIL import Image
|
13 |
+
import numpy as np
|
14 |
+
import os
|
15 |
+
import requests # For fetching funny cat GIFs
|
16 |
+
from huggingface_hub import hf_hub_download
|
17 |
+
|
18 |
+
# --- Re-use your model definition and loading functions ---
|
19 |
+
# (This part would be similar to your inference.py)
|
20 |
+
|
21 |
+
HF_USERNAME = "Hajorda" # Or the username of the model owner
|
22 |
+
HF_MODEL_NAME = "keduClasifier"
|
23 |
+
REPO_ID = f"{HF_USERNAME}/{HF_MODEL_NAME}"
|
24 |
+
|
25 |
+
cfg_dict_for_inference = {
|
26 |
+
'model_name': 'swin_tiny_patch4_window7_224', # Match training
|
27 |
+
'dropout_backbone': 0.1, # Match training
|
28 |
+
'dropout_fc': 0.2, # Match training
|
29 |
+
'img_size': (224, 224),
|
30 |
+
'num_classes': 37, # IMPORTANT: This must be correct for your trained model
|
31 |
+
}
|
32 |
+
cfg_inference = Box(cfg_dict_for_inference)
|
33 |
+
|
34 |
+
class PetBreedModel(pl.LightningModule): # Paste your PetBreedModel class here
|
35 |
+
def __init__(self, cfg: Box):
|
36 |
+
super().__init__()
|
37 |
+
self.cfg = cfg
|
38 |
+
self.backbone = create_model(
|
39 |
+
self.cfg.model_name, pretrained=False, num_classes=0,
|
40 |
+
in_chans=3, drop_rate=self.cfg.dropout_backbone
|
41 |
+
)
|
42 |
+
h, w = self.cfg.img_size
|
43 |
+
dummy_input = torch.randn(1, 3, h, w)
|
44 |
+
with torch.no_grad(): num_features = self.backbone(dummy_input).shape[-1]
|
45 |
+
self.fc = nn.Sequential(
|
46 |
+
nn.Linear(num_features, num_features // 2), nn.ReLU(),
|
47 |
+
nn.Dropout(self.cfg.dropout_fc),
|
48 |
+
nn.Linear(num_features // 2, self.cfg.num_classes)
|
49 |
+
)
|
50 |
+
def forward(self, x):
|
51 |
+
features = self.backbone(x); output = self.fc(features)
|
52 |
+
return output
|
53 |
+
|
54 |
+
def load_model_from_hf_for_space(repo_id=REPO_ID, ckpt_filename="pytorch_model.ckpt"):
|
55 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=ckpt_filename)
|
56 |
+
# Important: Ensure cfg_inference is correctly defined with num_classes
|
57 |
+
if cfg_inference.num_classes is None:
|
58 |
+
raise ValueError("num_classes must be set in cfg_inference to load the model for Gradio.")
|
59 |
+
loaded_model = PetBreedModel.load_from_checkpoint(model_path, cfg=cfg_inference, strict=False)
|
60 |
+
loaded_model.eval()
|
61 |
+
return loaded_model
|
62 |
+
|
63 |
+
def load_label_encoder_from_hf_for_space(repo_id=REPO_ID, le_filename="label_encoder.pkl"):
|
64 |
+
le_path = hf_hub_download(repo_id=repo_id, filename=le_filename)
|
65 |
+
with open(le_path, 'rb') as f: label_encoder = pickle.load(f)
|
66 |
+
return label_encoder
|
67 |
+
|
68 |
+
# Load model and encoder once when the app starts
|
69 |
+
model = load_model_from_hf_for_space()
|
70 |
+
label_encoder = load_label_encoder_from_hf_for_space()
|
71 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
72 |
+
model.to(device)
|
73 |
+
|
74 |
+
# --- Funny elements ---
|
75 |
+
funny_cat_keywords = ["funny cat", "silly cat", "cat meme", "derp cat"]
|
76 |
+
GIPHY_API_KEY = "YOUR_GIPHY_API_KEY" # Optional: For more variety, get a Giphy API key
|
77 |
+
|
78 |
+
def get_funny_cat_gif(breed_name):
|
79 |
+
try:
|
80 |
+
# Use a public API if you don't have a Giphy key, or a simpler source
|
81 |
+
# For example, a predefined list of GIFs
|
82 |
+
predefined_gifs = {
|
83 |
+
"abyssinian": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExaWN4bDNzNWVzM2VqNHE4Ym5zN2ZzZHF0Zzh0bGRqZzRjMnhsZW5pZCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/3oriO0OEd9QIDdllqo/giphy.gif",
|
84 |
+
"siamese": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExa3g0dHZtZmRncWN0cnZkNnVnMGRtYjN2ajZ2d3o1cHZtaW50ZHQ5ayZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/ICOgUNjpvO0PC/giphy.gif",
|
85 |
+
"default": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExNWMwNnU4NW9nZTV5c3Z0eThsOHhsOWN0Nnh0a3VzbjFxeGU0bjFuNiZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/BzyTuYCmvSORqs1ABM/giphy.gif"
|
86 |
+
}
|
87 |
+
return predefined_gifs.get(breed_name.lower().replace(" ", "_"), predefined_gifs["default"])
|
88 |
+
|
89 |
+
# If using Giphy API:
|
90 |
+
# search_term = f"{breed_name} {random.choice(funny_cat_keywords)}"
|
91 |
+
# params = {'api_key': GIPHY_API_KEY, 'q': search_term, 'limit': 1, 'rating': 'g'}
|
92 |
+
# response = requests.get("http://api.giphy.com/v1/gifs/search", params=params)
|
93 |
+
# response.raise_for_status()
|
94 |
+
# return response.json()['data'][0]['images']['original']['url']
|
95 |
+
except Exception as e:
|
96 |
+
print(f"Error fetching GIF: {e}")
|
97 |
+
return predefined_gifs["default"] # Fallback
|
98 |
+
|
99 |
+
# --- Gradio Interface Function ---
|
100 |
+
def classify_cat_breed(image_input):
|
101 |
+
# Gradio provides image as a NumPy array
|
102 |
+
img_rgb = cv2.cvtColor(image_input, cv2.COLOR_BGR2RGB) # Ensure it's RGB if needed
|
103 |
+
|
104 |
+
h, w = cfg_inference.img_size
|
105 |
+
transforms_gradio = A.Compose([
|
106 |
+
A.Resize(height=h, width=w),
|
107 |
+
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
108 |
+
ToTensorV2(),
|
109 |
+
])
|
110 |
+
input_tensor = transforms_gradio(image=img_rgb)['image'].unsqueeze(0).to(device)
|
111 |
+
|
112 |
+
with torch.no_grad():
|
113 |
+
logits = model(input_tensor)
|
114 |
+
probabilities = torch.softmax(logits, dim=1)
|
115 |
+
# Get top N predictions if you want
|
116 |
+
# top_probs, top_indices = torch.topk(probabilities, 3, dim=1)
|
117 |
+
|
118 |
+
# For single prediction:
|
119 |
+
confidence, predicted_idx = torch.max(probabilities, dim=1)
|
120 |
+
|
121 |
+
predicted_breed_id = predicted_idx.item()
|
122 |
+
predicted_breed_name = label_encoder.inverse_transform([predicted_breed_id])[0]
|
123 |
+
conf_score = confidence.item()
|
124 |
+
|
125 |
+
# Funny message and GIF
|
126 |
+
funny_message = f"I'm {conf_score*100:.1f}% sure this adorable furball is a {predicted_breed_name}! What a purrfect specimen!"
|
127 |
+
if conf_score < 0.7:
|
128 |
+
funny_message += " ...Or maybe it's a new, super-rare breed only I can see. π"
|
129 |
+
|
130 |
+
gif_url = get_funny_cat_gif(predicted_breed_name)
|
131 |
+
|
132 |
+
# Gradio expects a dictionary for multiple outputs if you name them
|
133 |
+
# Or a tuple if you don't name them in gr.Interface outputs
|
134 |
+
return (
|
135 |
+
f"{predicted_breed_name} (Confidence: {conf_score*100:.2f}%)",
|
136 |
+
funny_message,
|
137 |
+
gif_url # Gradio can display images/GIFs from URLs
|
138 |
+
)
|
139 |
+
|
140 |
+
# --- Define the Gradio Interface ---
|
141 |
+
title = "πΈ Purrfect Breed Guesser 3000 πΌ"
|
142 |
+
description = "Upload a picture of a cat, and I'll (hilariously) try to guess its breed! Powered by AI and a bit of cat-titude."
|
143 |
+
article = "<p style='text-align: center'>Model based on Swin Transformer, fine-tuned on the Oxford-IIIT Pet Dataset. <a href='https://huggingface.co/YOUR_HF_USERNAME/my-pet-breed-classifier-swin-tiny' target='_blank'>Model Card</a></p>"
|
144 |
+
|
145 |
+
iface = gr.Interface(
|
146 |
+
fn=classify_cat_breed,
|
147 |
+
inputs=gr.Image(type="numpy", label="Upload Cat Pic! πΈ"),
|
148 |
+
outputs=[
|
149 |
+
gr.Textbox(label="π§ My Guess Is..."),
|
150 |
+
gr.Textbox(label="π¬ My Deep Thoughts..."),
|
151 |
+
gr.Image(type="filepath", label="π Celebration GIF! π") # 'filepath' for URLs
|
152 |
+
],
|
153 |
+
title=title,
|
154 |
+
description=description,
|
155 |
+
article=article,
|
156 |
+
examples=[["example_cat1.jpg"], ["example_cat2.jpg"]], # Add paths to example images in your Space repo
|
157 |
+
theme=gr.themes.Soft() # Or try other themes!
|
158 |
+
)
|
159 |
+
|
160 |
+
if __name__ == "__main__":
|
161 |
+
iface.launch()
|