Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# app.py (for
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import pytorch_lightning as pl
|
@@ -12,26 +12,28 @@ import pickle
|
|
12 |
from PIL import Image
|
13 |
import numpy as np
|
14 |
import os
|
15 |
-
import requests #
|
|
|
16 |
from huggingface_hub import hf_hub_download
|
17 |
|
18 |
-
# ---
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
HF_MODEL_NAME = "keduClasifier"
|
23 |
REPO_ID = f"{HF_USERNAME}/{HF_MODEL_NAME}"
|
24 |
|
|
|
25 |
cfg_dict_for_inference = {
|
26 |
-
'model_name': 'swin_tiny_patch4_window7_224', #
|
27 |
-
'dropout_backbone': 0.1, #
|
28 |
-
'dropout_fc': 0.2, #
|
29 |
'img_size': (224, 224),
|
30 |
-
'num_classes': 37, #
|
31 |
}
|
32 |
cfg_inference = Box(cfg_dict_for_inference)
|
33 |
|
34 |
-
|
|
|
35 |
def __init__(self, cfg: Box):
|
36 |
super().__init__()
|
37 |
self.cfg = cfg
|
@@ -39,67 +41,87 @@ class PetBreedModel(pl.LightningModule): # Paste your PetBreedModel class here
|
|
39 |
self.cfg.model_name, pretrained=False, num_classes=0,
|
40 |
in_chans=3, drop_rate=self.cfg.dropout_backbone
|
41 |
)
|
42 |
-
|
|
|
43 |
dummy_input = torch.randn(1, 3, h, w)
|
44 |
-
with torch.no_grad():
|
|
|
45 |
self.fc = nn.Sequential(
|
46 |
nn.Linear(num_features, num_features // 2), nn.ReLU(),
|
47 |
nn.Dropout(self.cfg.dropout_fc),
|
48 |
nn.Linear(num_features // 2, self.cfg.num_classes)
|
49 |
)
|
50 |
def forward(self, x):
|
51 |
-
features = self.backbone(x)
|
|
|
52 |
return output
|
53 |
|
|
|
54 |
def load_model_from_hf_for_space(repo_id=REPO_ID, ckpt_filename="pytorch_model.ckpt"):
|
55 |
model_path = hf_hub_download(repo_id=repo_id, filename=ckpt_filename)
|
56 |
-
|
57 |
-
if cfg_inference.num_classes is None:
|
58 |
raise ValueError("num_classes must be set in cfg_inference to load the model for Gradio.")
|
|
|
59 |
loaded_model = PetBreedModel.load_from_checkpoint(model_path, cfg=cfg_inference, strict=False)
|
60 |
loaded_model.eval()
|
61 |
return loaded_model
|
62 |
|
63 |
def load_label_encoder_from_hf_for_space(repo_id=REPO_ID, le_filename="label_encoder.pkl"):
|
64 |
le_path = hf_hub_download(repo_id=repo_id, filename=le_filename)
|
65 |
-
with open(le_path, 'rb') as f:
|
|
|
66 |
return label_encoder
|
67 |
|
68 |
-
# Load
|
69 |
-
model
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def get_funny_cat_gif(breed_name):
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
98 |
|
99 |
# --- Gradio Interface Function ---
|
100 |
-
def classify_cat_breed(
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
103 |
|
104 |
h, w = cfg_inference.img_size
|
105 |
transforms_gradio = A.Compose([
|
@@ -112,50 +134,66 @@ def classify_cat_breed(image_input):
|
|
112 |
with torch.no_grad():
|
113 |
logits = model(input_tensor)
|
114 |
probabilities = torch.softmax(logits, dim=1)
|
115 |
-
# Get top N predictions if you want
|
116 |
-
# top_probs, top_indices = torch.topk(probabilities, 3, dim=1)
|
117 |
-
|
118 |
-
# For single prediction:
|
119 |
confidence, predicted_idx = torch.max(probabilities, dim=1)
|
120 |
|
121 |
predicted_breed_id = predicted_idx.item()
|
122 |
predicted_breed_name = label_encoder.inverse_transform([predicted_breed_id])[0]
|
123 |
conf_score = confidence.item()
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
129 |
|
130 |
gif_url = get_funny_cat_gif(predicted_breed_name)
|
131 |
|
132 |
-
# Gradio expects a dictionary for multiple outputs if you name them
|
133 |
-
# Or a tuple if you don't name them in gr.Interface outputs
|
134 |
return (
|
135 |
-
f"{predicted_breed_name} (Confidence: {conf_score*100:.2f}%)",
|
136 |
funny_message,
|
137 |
-
gif_url
|
138 |
)
|
139 |
|
140 |
# --- Define the Gradio Interface ---
|
141 |
-
title = "
|
142 |
-
description =
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
iface = gr.Interface(
|
146 |
fn=classify_cat_breed,
|
147 |
-
inputs=gr.Image(type="numpy", label="Upload
|
148 |
outputs=[
|
149 |
-
gr.Textbox(label="π§
|
150 |
-
gr.
|
151 |
-
gr.Image(type="filepath", label="π Celebration GIF! π")
|
152 |
],
|
153 |
title=title,
|
154 |
description=description,
|
155 |
article=article,
|
156 |
-
examples=
|
157 |
-
theme=gr.themes.
|
|
|
158 |
)
|
159 |
|
160 |
if __name__ == "__main__":
|
|
|
|
|
161 |
iface.launch()
|
|
|
1 |
+
# app.py (for your Hugging Face Space/Model Repo: Hajorda/keduClassifier)
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import pytorch_lightning as pl
|
|
|
12 |
from PIL import Image
|
13 |
import numpy as np
|
14 |
import os
|
15 |
+
# import requests # Commenting out as Giphy API key is not used by default
|
16 |
+
import random # For random choice of keywords if you enable Giphy later
|
17 |
from huggingface_hub import hf_hub_download
|
18 |
|
19 |
+
# --- Model and Repository Configuration ---
|
20 |
+
# This should exactly match your model repository on Hugging Face
|
21 |
+
HF_USERNAME = "Hajorda"
|
22 |
+
HF_MODEL_NAME = "keduClassifier" # CORRECTED: Matches your repo name
|
|
|
23 |
REPO_ID = f"{HF_USERNAME}/{HF_MODEL_NAME}"
|
24 |
|
25 |
+
# --- Inference Configuration ---
|
26 |
cfg_dict_for_inference = {
|
27 |
+
'model_name': 'swin_tiny_patch4_window7_224', # Should match your trained model
|
28 |
+
'dropout_backbone': 0.1, # Should match your trained model
|
29 |
+
'dropout_fc': 0.2, # Should match your trained model
|
30 |
'img_size': (224, 224),
|
31 |
+
'num_classes': 37, # This MUST match the number of classes your model was trained on
|
32 |
}
|
33 |
cfg_inference = Box(cfg_dict_for_inference)
|
34 |
|
35 |
+
# --- PyTorch Lightning Model Definition ---
|
36 |
+
class PetBreedModel(pl.LightningModule):
|
37 |
def __init__(self, cfg: Box):
|
38 |
super().__init__()
|
39 |
self.cfg = cfg
|
|
|
41 |
self.cfg.model_name, pretrained=False, num_classes=0,
|
42 |
in_chans=3, drop_rate=self.cfg.dropout_backbone
|
43 |
)
|
44 |
+
# Ensure img_size is a tuple for unpacking
|
45 |
+
h, w = self.cfg.img_size if isinstance(self.cfg.img_size, tuple) else (224, 224)
|
46 |
dummy_input = torch.randn(1, 3, h, w)
|
47 |
+
with torch.no_grad():
|
48 |
+
num_features = self.backbone(dummy_input).shape[-1]
|
49 |
self.fc = nn.Sequential(
|
50 |
nn.Linear(num_features, num_features // 2), nn.ReLU(),
|
51 |
nn.Dropout(self.cfg.dropout_fc),
|
52 |
nn.Linear(num_features // 2, self.cfg.num_classes)
|
53 |
)
|
54 |
def forward(self, x):
|
55 |
+
features = self.backbone(x)
|
56 |
+
output = self.fc(features)
|
57 |
return output
|
58 |
|
59 |
+
# --- Helper Functions to Load Assets from Hugging Face Hub ---
|
60 |
def load_model_from_hf_for_space(repo_id=REPO_ID, ckpt_filename="pytorch_model.ckpt"):
|
61 |
model_path = hf_hub_download(repo_id=repo_id, filename=ckpt_filename)
|
62 |
+
if cfg_inference.num_classes is None: # Should be set by cfg_dict_for_inference
|
|
|
63 |
raise ValueError("num_classes must be set in cfg_inference to load the model for Gradio.")
|
64 |
+
# Pass the cfg for the model structure
|
65 |
loaded_model = PetBreedModel.load_from_checkpoint(model_path, cfg=cfg_inference, strict=False)
|
66 |
loaded_model.eval()
|
67 |
return loaded_model
|
68 |
|
69 |
def load_label_encoder_from_hf_for_space(repo_id=REPO_ID, le_filename="label_encoder.pkl"):
|
70 |
le_path = hf_hub_download(repo_id=repo_id, filename=le_filename)
|
71 |
+
with open(le_path, 'rb') as f:
|
72 |
+
label_encoder = pickle.load(f)
|
73 |
return label_encoder
|
74 |
|
75 |
+
# --- Load Model and Label Encoder (once at app startup) ---
|
76 |
+
print(f"Loading model and label encoder from repository: {REPO_ID}")
|
77 |
+
try:
|
78 |
+
model = load_model_from_hf_for_space()
|
79 |
+
label_encoder = load_label_encoder_from_hf_for_space()
|
80 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
81 |
+
model.to(device)
|
82 |
+
print(f"Model and label encoder loaded successfully. Using device: {device}")
|
83 |
+
except Exception as e:
|
84 |
+
print(f"Error loading model or label encoder: {e}")
|
85 |
+
# If loading fails, the Gradio app might not work.
|
86 |
+
# Consider how to handle this, e.g., display an error in the UI.
|
87 |
+
model = None
|
88 |
+
label_encoder = None
|
89 |
+
device = "cpu"
|
90 |
+
|
91 |
+
|
92 |
+
# --- Funny GIF Logic ---
|
93 |
+
# funny_cat_keywords = ["funny cat", "silly cat", "cat meme", "derp cat"]
|
94 |
+
# GIPHY_API_KEY = "YOUR_GIPHY_API_KEY" # Optional
|
95 |
|
96 |
def get_funny_cat_gif(breed_name):
|
97 |
+
# Using a predefined list for simplicity and to avoid API key requirements
|
98 |
+
predefined_gifs = {
|
99 |
+
"abyssinian": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExaWN4bDNzNWVzM2VqNHE4Ym5zN2ZzZHF0Zzh0bGRqZzRjMnhsZW5pZCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/3oriO0OEd9QIDdllqo/giphy.gif",
|
100 |
+
"american bulldog": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExbHgzYXB6N3g5NThnaXU2eWR2aHljOXg3NjMzbGJwNmF6NmxkdXU2ayZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/1simplexLKhMTqI/giphy.gif", # Example for a dog breed
|
101 |
+
"bengal": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExbnl0Z2J6cWtub29qdjFlajQ4ZXZ6czY2ZDY0cW53b3I2amI0OHhoYSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/BK1 SANT0sqq1q/giphy.gif",
|
102 |
+
"birman": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExZ3Q4NXZmMjQ1azE2dHZ2czZnNnBoNThkZ3FkY2Z0c3hqNjVqMTdhaSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/catdogcessing/giphy.gif",
|
103 |
+
"bombay": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExc3N5b2c3MmgwN3JzbjRkYmdocjdhcDc3ejExZGZqZmZtbDBxdXRrcSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/q1MeAPDDMb43K/giphy.gif",
|
104 |
+
"british shorthair": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExYTY3NG96bTc0bnFyOGNkaXBwcTYwdGZzZ3JwY2pscGNmbmZydG05eSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/Lq0h93752f6J9tij39/giphy.gif",
|
105 |
+
"egyptian mau": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExbjZ6dmJvaDhsb3N4ZXdkOXNrbzRkYnJmMHo3MnE2bWJocjU0Mm5jayZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/3o7ZeLambpFh3TS2ZO/giphy.gif",
|
106 |
+
"maine coon": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExd3F6NWoyanFmY2xmcHBtMHRhMXAzaXZrYnJia3UxcDRtcXFsYjE2NSZlcD12MV9pbnRlcm5hbF_naWZfYnlfaWQmY3Q9Zw/MDrmyLuUh9A1a/giphy.gif",
|
107 |
+
"persian": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExYW12cDRuc3ZtZ2ZpN2Q2cjdwMHBmb2F3MzJ5d295dGRscG9hdmFpNiZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/uE4gVmbjaZmmY/giphy.gif",
|
108 |
+
"ragdoll": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExczZqNWs2ZWU1ZTVobXVxdTZrN2hzcGZoaDVrYnNpZGF4a3FpM3N4aCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/ObTT5h01Xo43C/giphy.gif",
|
109 |
+
"russian blue": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExc3NqcHgzcnVldjA2MnQxc3oyZnp5a2R1eXZxY21hZTN4NHAwd2NyNyZlcD12MV9pbnRlcm5hbF_naWZfYnlfaWQmY3Q9Zw/114ZzmjHizvdsY/giphy.gif",
|
110 |
+
"siamese": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExa3g0dHZtZmRncWN0cnZkNnVnMGRtYjN2ajZ2d3o1cHZtaW50ZHQ5ayZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/ICOgUNjpvO0PC/giphy.gif",
|
111 |
+
"sphynx": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExcXZjdzFybXh0ZW53OHI4ZWQxazNtb3N4dDNzOGJrdmZrdXFzbnUyZSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/mlvseq9yvZhba/giphy.gif",
|
112 |
+
"default": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExNWMwNnU4NW9nZTV5c3Z0eThsOHhsOWN0Nnh0a3VzbjFxeGU0bjFuNiZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/BzyTuYCmvSORqs1ABM/giphy.gif"
|
113 |
+
}
|
114 |
+
# Normalize breed name for lookup
|
115 |
+
normalized_breed_name = breed_name.lower().replace(" ", "_").replace("-", "_")
|
116 |
+
return predefined_gifs.get(normalized_breed_name, predefined_gifs["default"])
|
117 |
|
118 |
# --- Gradio Interface Function ---
|
119 |
+
def classify_cat_breed(image_input_bgr): # Gradio image is usually BGR numpy array
|
120 |
+
if model is None or label_encoder is None:
|
121 |
+
return ("Model not loaded. Please check logs.", "Error: Model components failed to load.", "")
|
122 |
+
|
123 |
+
# Convert BGR to RGB
|
124 |
+
img_rgb = cv2.cvtColor(image_input_bgr, cv2.COLOR_BGR2RGB)
|
125 |
|
126 |
h, w = cfg_inference.img_size
|
127 |
transforms_gradio = A.Compose([
|
|
|
134 |
with torch.no_grad():
|
135 |
logits = model(input_tensor)
|
136 |
probabilities = torch.softmax(logits, dim=1)
|
|
|
|
|
|
|
|
|
137 |
confidence, predicted_idx = torch.max(probabilities, dim=1)
|
138 |
|
139 |
predicted_breed_id = predicted_idx.item()
|
140 |
predicted_breed_name = label_encoder.inverse_transform([predicted_breed_id])[0]
|
141 |
conf_score = confidence.item()
|
142 |
|
143 |
+
funny_message = f"My AI brain (all {conf_score*100:.1f}% of it that's sure) says this purrfect creature is a **{predicted_breed_name}**!"
|
144 |
+
if conf_score < 0.5:
|
145 |
+
funny_message += " ...Though, to be honest, it could also be a very fluffy potato. My circuits are confused! π₯"
|
146 |
+
elif conf_score < 0.8:
|
147 |
+
funny_message += " Pretty confident, but if it starts barking, don't blame me! π"
|
148 |
+
else:
|
149 |
+
funny_message += " Absolutely magnificent! A textbook example, if cats read textbooks. π§"
|
150 |
|
151 |
gif_url = get_funny_cat_gif(predicted_breed_name)
|
152 |
|
|
|
|
|
153 |
return (
|
154 |
+
f"**{predicted_breed_name.title()}** (Confidence: {conf_score*100:.2f}%)",
|
155 |
funny_message,
|
156 |
+
gif_url
|
157 |
)
|
158 |
|
159 |
# --- Define the Gradio Interface ---
|
160 |
+
title = "πΌ KEDU's Kompletely Kooky Kat (and K9?) Klassifier! πΆ"
|
161 |
+
description = (
|
162 |
+
"Upload a pic of your furry overlord (cat OR dog from the Oxford-IIIT set!), and I'll "
|
163 |
+
"attempt a hilariously 'accurate' breed guess. Powered by Swin Transformers and an "
|
164 |
+
"unhealthy obsession with pets. Results may vary, giggles guaranteed!"
|
165 |
+
)
|
166 |
+
# Corrected article link
|
167 |
+
article_link_href = f"https://huggingface.co/{REPO_ID}" # Uses the correctly defined REPO_ID
|
168 |
+
article = f"<p style='text-align: center'>Model based on Swin Transformer, fine-tuned on the Oxford-IIIT Pet Dataset. <a href='{article_link_href}' target='_blank'>Model Card & Files</a></p>"
|
169 |
+
|
170 |
+
# Add some example images to your repo and reference them here
|
171 |
+
# For example, if you add 'cat_example.jpg' and 'dog_example.jpg' to your HF repo
|
172 |
+
example_images = [
|
173 |
+
["cat_example.jpg"], # You'll need to upload this image to your HF repo
|
174 |
+
["dog_example.jpg"] # You'll need to upload this image to your HF repo
|
175 |
+
]
|
176 |
+
# Check if example files exist, if not, provide placeholders or skip examples
|
177 |
+
# This check would ideally be done by trying to download them if they are remote URLs
|
178 |
+
# For local paths in a repo, Gradio handles it if the files are present.
|
179 |
|
180 |
iface = gr.Interface(
|
181 |
fn=classify_cat_breed,
|
182 |
+
inputs=gr.Image(type="numpy", label="Upload Your Pet's Most Glamorous Shot! πΈ"),
|
183 |
outputs=[
|
184 |
+
gr.Textbox(label="π§ The AI's Verdict Is... (Breed & Confidence)"),
|
185 |
+
gr.Markdown(label="π¬ AI's Deep (and Silly) Thoughts..."), # Markdown for bolding
|
186 |
+
gr.Image(type="filepath", label="π Celebration/Confusion GIF! π")
|
187 |
],
|
188 |
title=title,
|
189 |
description=description,
|
190 |
article=article,
|
191 |
+
# examples=example_images, # Uncomment if you add example images to your repo
|
192 |
+
theme=gr.themes.Monochrome(), # Trying a different theme
|
193 |
+
allow_flagging='never'
|
194 |
)
|
195 |
|
196 |
if __name__ == "__main__":
|
197 |
+
# When running locally (e.g., python app.py), this will launch the server.
|
198 |
+
# On Hugging Face Spaces, Spaces handles the launch.
|
199 |
iface.launch()
|