Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# تحميل الموديل
|
6 |
+
model_name = "Salesforce/codegen-350M-mono"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to("cpu")
|
9 |
+
|
10 |
+
# دالة التوليد
|
11 |
+
def generate_code(prompt):
|
12 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
13 |
+
outputs = model.generate(**inputs, max_length=128, num_return_sequences=1)
|
14 |
+
code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
15 |
+
return code
|
16 |
+
|
17 |
+
# واجهة Gradio
|
18 |
+
gr.Interface(
|
19 |
+
fn=generate_code,
|
20 |
+
inputs=gr.Textbox(lines=5, placeholder="Describe what code you want...", label="Prompt"),
|
21 |
+
outputs=gr.Textbox(label="Generated Code"),
|
22 |
+
title="Code Generator - Mono Model",
|
23 |
+
description="Generate Python code from a text description using CodeGen-350M-Mono model"
|
24 |
+
).launch()
|