File size: 5,983 Bytes
56bd5b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from typing import Dict, List

import evaluate
from datasets import Features, Sequence, Value
from sklearn.metrics import accuracy_score

from research_eval.utils.preprocessing import absa_term_preprocess

_CITATION = """
"""

_DESCRIPTION = """
Evaluation metrics for Aspect-Based Sentiment Analysis (ABSA) including precision, recall, and F1 score for aspect terms and polarities.
"""

_KWARGS_DESCRIPTION = """
Computes precision, recall, and F1 score for aspect terms and polarities in Aspect-Based Sentiment Analysis (ABSA).

Args:
    predictions: List of ABSA predictions with the following structure:
        - 'aspects': Sequence of aspect annotations, each with the following keys:
            - 'term': Aspect term
            - 'polarity': Polarity of the aspect term
    references: List of ABSA references with the same structure as predictions.
Returns:
    aspect_precision: Precision score for aspect terms
    aspect_recall: Recall score for aspect terms
    aspect_f1: F1 score for aspect terms
    polarity_precision: Precision score for aspect polarities
    polarity_recall: Recall score for aspect polarities
    polarity_f1: F1 score for aspect polarities
"""


class AbsaEvaluatorTest(evaluate.Metric):
    def _info(self):
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=Features(
                {
                    "predictions": Features(
                        {
                            "aspects": Features(
                                {
                                    "term": Sequence(Value("string")),
                                    "polarity": Sequence(Value("string")),
                                }
                            ),
                            "category": Features(
                                {
                                    "category": Sequence(Value("string")),
                                    "polarity": Sequence(Value("string")),
                                }
                            ),
                        }
                    ),
                    "references": Features(
                        {
                            "aspects": Features(
                                {
                                    "term": Sequence(Value("string")),
                                    "polarity": Sequence(Value("string")),
                                }
                            ),
                            "category": Features(
                                {
                                    "category": Sequence(Value("string")),
                                    "polarity": Sequence(Value("string")),
                                }
                            ),
                        }
                    ),
                }
            ),
        )

    def _compute(self, predictions, references):
        # preprocess aspect term
        (
            truth_aspect_terms,
            pred_aspect_terms,
            truth_term_polarities,
            pred_term_polarities,
        ) = absa_term_preprocess(
            references=references,
            predictions=predictions,
            subtask_key="aspects",
            subtask_value="term",
        )
        # evaluate
        term_results = self.semeval_metric(
            truth_aspect_terms, pred_aspect_terms
        )
        term_polarity_acc = accuracy_score(
            truth_term_polarities, pred_term_polarities
        )

        # preprocess category detection
        (
            truth_categories,
            pred_categories,
            truth_cat_polarities,
            pred_cat_polarities,
        ) = absa_term_preprocess(
            references=references,
            predictions=predictions,
            subtask_key="category",
            subtask_value="category",
        )

        # evaluate
        category_results = self.semeval_metric(
            truth_categories, pred_categories
        )
        cat_polarity_acc = accuracy_score(
            truth_cat_polarities, pred_cat_polarities
        )

        return {
            "term_extraction_results": term_results,
            "term_polarity_results_accuracy": term_polarity_acc,
            "category_detection_results": category_results,
            "category_polarity_results_accuracy": cat_polarity_acc,
        }

    def semeval_metric(
        self, truths: List[List[str]], preds: List[List[str]]
    ) -> Dict[str, float]:
        """
        Implements evaluation for extraction tasks using precision, recall, and F1 score.

        Parameters:
        - truths: List of lists, where each list contains the ground truth labels for a sample.
        - preds: List of lists, where each list contains the predicted labels for a sample.

        Returns:
        - A dictionary containing the precision, recall, F1 score, and counts of common, retrieved, and relevant.

        link for code: link for this code: https://github.com/davidsbatista/Aspect-Based-Sentiment-Analysis/blob/1d9c8ec1131993d924e96676fa212db6b53cb870/libraries/baselines.py#L387
        """
        b = 1
        common, relevant, retrieved = 0.0, 0.0, 0.0
        for truth, pred in zip(truths, preds):
            common += len([a for a in pred if a in truth])
            retrieved += len(pred)
            relevant += len(truth)
        precision = common / retrieved if retrieved > 0 else 0.0
        recall = common / relevant if relevant > 0 else 0.0
        f1 = (
            (1 + (b**2))
            * precision
            * recall
            / ((precision * b**2) + recall)
            if precision > 0 and recall > 0
            else 0.0
        )
        return {
            "precision": precision,
            "recall": recall,
            "f1_score": f1,
            "common": common,
            "retrieved": retrieved,
            "relevant": relevant,
        }