Spaces:
Sleeping
Sleeping
# app/rag_system.py | |
from pathlib import Path | |
from typing import List, Tuple | |
import os | |
import faiss | |
import numpy as np | |
from sentence_transformers import SentenceTransformer | |
from pypdf import PdfReader | |
DATA_DIR = Path(__file__).resolve().parent.parent / "data" | |
UPLOAD_DIR = DATA_DIR / "uploads" | |
INDEX_DIR = DATA_DIR / "index" | |
INDEX_DIR.mkdir(parents=True, exist_ok=True) | |
UPLOAD_DIR.mkdir(parents=True, exist_ok=True) | |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2") | |
class SimpleRAG: | |
def __init__(self, index_path: Path = INDEX_DIR / "faiss.index", meta_path: Path = INDEX_DIR / "meta.npy"): | |
self.model = SentenceTransformer(MODEL_NAME) | |
self.index_path = index_path | |
self.meta_path = meta_path | |
self.index = None | |
self.chunks: List[str] = [] | |
self._load() | |
def _load(self): | |
# meta (chunks) yüklə | |
if self.meta_path.exists(): | |
self.chunks = np.load(self.meta_path, allow_pickle=True).tolist() | |
# faiss index yüklə | |
if self.index_path.exists(): | |
# dim modelin çıxış ölçüsü | |
dim = self.model.get_sentence_embedding_dimension() | |
self.index = faiss.read_index(str(self.index_path)) | |
# təhlükəsizlik: ölçüsü uyğun olmalıdır | |
if self.index.d != dim: | |
# uyğunsuzluqda sıfırdan başla | |
self.index = faiss.IndexFlatIP(dim) | |
else: | |
dim = self.model.get_sentence_embedding_dimension() | |
self.index = faiss.IndexFlatIP(dim) | |
def _persist(self): | |
faiss.write_index(self.index, str(self.index_path)) | |
np.save(self.meta_path, np.array(self.chunks, dtype=object)) | |
def _pdf_to_texts(pdf_path: Path) -> List[str]: | |
reader = PdfReader(str(pdf_path)) | |
full_text = [] | |
for page in reader.pages: | |
t = page.extract_text() or "" | |
if t.strip(): | |
full_text.append(t) | |
# sadə parçalama: ~500 hərf | |
chunks = [] | |
for txt in full_text: | |
step = 800 | |
for i in range(0, len(txt), step): | |
chunks.append(txt[i:i+step]) | |
return chunks | |
def add_pdf(self, pdf_path: Path) -> int: | |
texts = self._pdf_to_texts(pdf_path) | |
if not texts: | |
return 0 | |
emb = self.model.encode(texts, convert_to_numpy=True, normalize_embeddings=True) | |
self.index.add(emb) | |
self.chunks.extend(texts) | |
self._persist() | |
return len(texts) | |
def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]: | |
q = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True) | |
D, I = self.index.search(q, k) | |
results = [] | |
if I.size > 0 and len(self.chunks) > 0: | |
for idx, score in zip(I[0], D[0]): | |
if 0 <= idx < len(self.chunks): | |
results.append((self.chunks[idx], float(score))) | |
return results | |
# sadə cavab formalaşdırıcı (LLM yoxdursa, kontekst + heuristika) | |
def synthesize_answer(question: str, contexts: List[str]) -> str: | |
if not contexts: | |
return "Kontekst tapılmadı. Sualı daha dəqiq verin və ya PDF yükləyin." | |
joined = "\n---\n".join(contexts[:3]) | |
return ( | |
f"Sual: {question}\n\n" | |
f"Cavab (kontekstdən çıxarış):\n{joined}\n\n" | |
f"(Qeyd: Demo rejimi — LLM inteqrasiyası üçün / later: OpenAI/Groq və s.)" | |
) | |