Spaces:
Sleeping
Sleeping
Commit
·
1fb5688
1
Parent(s):
9dc7698
Text cleanups: join inter-letter spaces + ftfy normalize
Browse files- app/rag_system.py +59 -60
app/rag_system.py
CHANGED
@@ -8,53 +8,72 @@ from typing import List, Tuple
|
|
8 |
|
9 |
import faiss
|
10 |
import numpy as np
|
11 |
-
from ftfy import fix_text
|
12 |
|
13 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
try:
|
15 |
from pypdf import PdfReader
|
16 |
-
except Exception:
|
17 |
from PyPDF2 import PdfReader # type: ignore
|
18 |
|
19 |
from sentence_transformers import SentenceTransformer
|
20 |
|
21 |
-
#
|
22 |
-
#
|
23 |
-
|
|
|
24 |
DATA_DIR = Path(os.getenv("DATA_DIR", str(ROOT_DIR / "data")))
|
25 |
UPLOAD_DIR = Path(os.getenv("UPLOAD_DIR", str(DATA_DIR / "uploads")))
|
26 |
INDEX_DIR = Path(os.getenv("INDEX_DIR", str(DATA_DIR / "index")))
|
27 |
-
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache")))
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
34 |
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower()
|
35 |
|
36 |
-
#
|
37 |
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ")
|
|
|
|
|
38 |
NUM_TOKEN_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
|
39 |
|
40 |
STOPWORDS = {
|
41 |
-
"the",
|
42 |
-
"this",
|
43 |
-
"at",
|
44 |
-
"such",
|
45 |
}
|
46 |
|
47 |
-
AZ_LATIN = "A-Za-zƏəĞğİıÖöŞşÇç"
|
48 |
-
_SINGLE_LETTER_RUN = re.compile(rf"\b(?:[{AZ_LATIN}]\s+){{2,}}[{AZ_LATIN}]\b")
|
49 |
-
|
50 |
def _fix_intra_word_spaces(s: str) -> str:
|
51 |
-
"""'H Ə F T Ə' → 'HƏFTƏ' (yalnız ardıcıl tək-
|
52 |
if not s:
|
53 |
return s
|
54 |
return _SINGLE_LETTER_RUN.sub(lambda m: re.sub(r"\s+", "", m.group(0)), s)
|
55 |
|
56 |
def _fix_mojibake(s: str) -> str:
|
57 |
-
"""UTF-8-
|
58 |
if not s:
|
59 |
return s
|
60 |
if any(ch in s for ch in ("Ã", "Ä", "Å", "Ð", "Þ", "þ")):
|
@@ -64,17 +83,6 @@ def _fix_mojibake(s: str) -> str:
|
|
64 |
return s
|
65 |
return s
|
66 |
|
67 |
-
def _normalize_text(s: str) -> str:
|
68 |
-
if not s:
|
69 |
-
return s
|
70 |
-
s = fix_text(s) # ftfy ilə ümumi düzəlişlər
|
71 |
-
s = _fix_mojibake(s) # latin-1 → utf-8 “çevrilməsi” cəhd
|
72 |
-
s = s.replace("fi", "fi").replace("fl", "fl")
|
73 |
-
s = _fix_intra_word_spaces(s) # H Ə F T Ə → HƏFTƏ
|
74 |
-
s = re.sub(r"[ \t]+", " ", s)
|
75 |
-
s = re.sub(r"\s+\n", "\n", s)
|
76 |
-
return s.strip()
|
77 |
-
|
78 |
def _split_sentences(text: str) -> List[str]:
|
79 |
return [s.strip() for s in re.split(r"(?<=[\.!\?])\s+|[\r\n]+", text) if s.strip()]
|
80 |
|
@@ -83,7 +91,7 @@ def _mostly_numeric(s: str) -> bool:
|
|
83 |
if not alnum:
|
84 |
return True
|
85 |
digits = sum(c.isdigit() for c in alnum)
|
86 |
-
return digits / max(1, len(alnum)) > 0.
|
87 |
|
88 |
def _tabular_like(s: str) -> bool:
|
89 |
hits = len(NUM_TOKEN_RE.findall(s))
|
@@ -93,11 +101,7 @@ def _clean_for_summary(text: str) -> str:
|
|
93 |
out = []
|
94 |
for ln in text.splitlines():
|
95 |
t = " ".join(ln.split())
|
96 |
-
if not t:
|
97 |
-
continue
|
98 |
-
if len(t) < 25:
|
99 |
-
continue
|
100 |
-
if _mostly_numeric(t) or _tabular_like(t):
|
101 |
continue
|
102 |
out.append(t)
|
103 |
return " ".join(out)
|
@@ -118,7 +122,7 @@ def _looks_azerbaijani(s: str) -> bool:
|
|
118 |
non_ascii_ratio = sum(ord(c) > 127 for c in s) / max(1, len(s))
|
119 |
return has_az or non_ascii_ratio > 0.15
|
120 |
|
121 |
-
#
|
122 |
class SimpleRAG:
|
123 |
def __init__(
|
124 |
self,
|
@@ -138,7 +142,7 @@ class SimpleRAG:
|
|
138 |
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim)
|
139 |
self.chunks: List[str] = []
|
140 |
self.last_added: List[str] = []
|
141 |
-
self._translator = None # lazy
|
142 |
|
143 |
self._load()
|
144 |
|
@@ -172,26 +176,20 @@ class SimpleRAG:
|
|
172 |
pages: List[str] = []
|
173 |
for p in reader.pages:
|
174 |
t = p.extract_text() or ""
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
177 |
pages.append(t)
|
178 |
-
|
179 |
chunks: List[str] = []
|
180 |
for txt in pages:
|
181 |
for i in range(0, len(txt), step):
|
182 |
-
part = txt[i: i + step].strip()
|
183 |
if part:
|
184 |
chunks.append(part)
|
185 |
-
|
186 |
-
# simple dedup to avoid exact repeats
|
187 |
-
seen = set()
|
188 |
-
uniq: List[str] = []
|
189 |
-
for c in chunks:
|
190 |
-
if c in seen:
|
191 |
-
continue
|
192 |
-
seen.add(c)
|
193 |
-
uniq.append(c)
|
194 |
-
return uniq
|
195 |
|
196 |
# ---------- Indexing ----------
|
197 |
def add_pdf(self, pdf_path: Path) -> int:
|
@@ -274,10 +272,13 @@ class SimpleRAG:
|
|
274 |
if not contexts and self.is_empty:
|
275 |
return "No relevant context found. Index is empty — upload a PDF first."
|
276 |
|
277 |
-
#
|
278 |
-
contexts = [
|
|
|
|
|
|
|
279 |
|
280 |
-
#
|
281 |
local_pool: List[str] = []
|
282 |
for c in (contexts or [])[:5]:
|
283 |
cleaned = _clean_for_summary(c)
|
@@ -289,7 +290,6 @@ class SimpleRAG:
|
|
289 |
continue
|
290 |
local_pool.append(" ".join(w))
|
291 |
|
292 |
-
# 2) rank by similarity to question
|
293 |
selected: List[str] = []
|
294 |
if local_pool:
|
295 |
q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
|
@@ -304,15 +304,14 @@ class SimpleRAG:
|
|
304 |
if len(selected) >= max_sentences:
|
305 |
break
|
306 |
|
307 |
-
# 3) keyword fallback (whole corpus) əgər nəticə zəifdirsə
|
308 |
if not selected:
|
309 |
selected = self._keyword_fallback(question, self.chunks, limit_sentences=max_sentences)
|
310 |
|
311 |
if not selected:
|
312 |
return "No readable sentences matched the question. Try a more specific query."
|
313 |
|
314 |
-
#
|
315 |
-
if OUTPUT_LANG == "en" and any(
|
316 |
selected = self._translate_to_en(selected)
|
317 |
|
318 |
bullets = "\n".join(f"- {s}" for s in selected)
|
|
|
8 |
|
9 |
import faiss
|
10 |
import numpy as np
|
|
|
11 |
|
12 |
+
# --- ftfy (mojibake/normalizasiya) ---
|
13 |
+
try:
|
14 |
+
from ftfy import fix_text as _ftfy
|
15 |
+
except Exception: # ftfy yoxdursa, no-op
|
16 |
+
def _ftfy(x: str) -> str:
|
17 |
+
return x
|
18 |
+
|
19 |
+
# pypdf -> PyPDF2 fallback
|
20 |
try:
|
21 |
from pypdf import PdfReader
|
22 |
+
except Exception:
|
23 |
from PyPDF2 import PdfReader # type: ignore
|
24 |
|
25 |
from sentence_transformers import SentenceTransformer
|
26 |
|
27 |
+
# ---------------- Paths & Cache (HF-safe) ----------------
|
28 |
+
# Default: repo kökü; APP_ROOT verilərsə ona keç
|
29 |
+
DEFAULT_ROOT = Path(__file__).resolve().parents[1]
|
30 |
+
ROOT_DIR = Path(os.getenv("APP_ROOT", str(DEFAULT_ROOT)))
|
31 |
DATA_DIR = Path(os.getenv("DATA_DIR", str(ROOT_DIR / "data")))
|
32 |
UPLOAD_DIR = Path(os.getenv("UPLOAD_DIR", str(DATA_DIR / "uploads")))
|
33 |
INDEX_DIR = Path(os.getenv("INDEX_DIR", str(DATA_DIR / "index")))
|
34 |
+
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache"))) # transformers üçün ən yaxşısı HF_HOME
|
35 |
|
36 |
+
# cəhd et yaratmağa; icazə problemi olsa, local ./data-a düş
|
37 |
+
for pth in (CACHE_DIR,):
|
38 |
+
try:
|
39 |
+
pth.mkdir(parents=True, exist_ok=True)
|
40 |
+
except PermissionError:
|
41 |
+
pass
|
42 |
|
43 |
+
try:
|
44 |
+
DATA_DIR.mkdir(parents=True, exist_ok=True)
|
45 |
+
UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
|
46 |
+
INDEX_DIR.mkdir(parents=True, exist_ok=True)
|
47 |
+
except PermissionError:
|
48 |
+
DATA_DIR = Path("./data"); DATA_DIR.mkdir(parents=True, exist_ok=True)
|
49 |
+
UPLOAD_DIR = DATA_DIR / "uploads"; UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
|
50 |
+
INDEX_DIR = DATA_DIR / "index"; INDEX_DIR.mkdir(parents=True, exist_ok=True)
|
51 |
+
|
52 |
+
# ---------------- Config ----------------
|
53 |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
54 |
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower()
|
55 |
|
56 |
+
# ---------------- Helpers ----------------
|
57 |
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ")
|
58 |
+
AZ_LATIN = "A-Za-zƏəĞğİıÖöŞşÇç"
|
59 |
+
_SINGLE_LETTER_RUN = re.compile(rf"\b(?:[{AZ_LATIN}]\s+){{2,}}[{AZ_LATIN}]\b")
|
60 |
NUM_TOKEN_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
|
61 |
|
62 |
STOPWORDS = {
|
63 |
+
"the","a","an","and","or","of","to","in","on","for","with","by",
|
64 |
+
"this","that","these","those","is","are","was","were","be","been","being",
|
65 |
+
"at","as","it","its","from","into","about","over","after","before","than",
|
66 |
+
"such","can","could","should","would","may","might","will","shall"
|
67 |
}
|
68 |
|
|
|
|
|
|
|
69 |
def _fix_intra_word_spaces(s: str) -> str:
|
70 |
+
"""'c l a s s' → 'class', 'H Ə F T Ə' → 'HƏFTƏ' (yalnız ardıcıl tək-hərflər)."""
|
71 |
if not s:
|
72 |
return s
|
73 |
return _SINGLE_LETTER_RUN.sub(lambda m: re.sub(r"\s+", "", m.group(0)), s)
|
74 |
|
75 |
def _fix_mojibake(s: str) -> str:
|
76 |
+
"""UTF-8-in Latin-1 kimi oxunmasından yaranan 'ö' və s. pozuntuları yumşaq düzəlt."""
|
77 |
if not s:
|
78 |
return s
|
79 |
if any(ch in s for ch in ("Ã", "Ä", "Å", "Ð", "Þ", "þ")):
|
|
|
83 |
return s
|
84 |
return s
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
def _split_sentences(text: str) -> List[str]:
|
87 |
return [s.strip() for s in re.split(r"(?<=[\.!\?])\s+|[\r\n]+", text) if s.strip()]
|
88 |
|
|
|
91 |
if not alnum:
|
92 |
return True
|
93 |
digits = sum(c.isdigit() for c in alnum)
|
94 |
+
return digits / max(1, len(alnum)) > 0.3
|
95 |
|
96 |
def _tabular_like(s: str) -> bool:
|
97 |
hits = len(NUM_TOKEN_RE.findall(s))
|
|
|
101 |
out = []
|
102 |
for ln in text.splitlines():
|
103 |
t = " ".join(ln.split())
|
104 |
+
if not t or _mostly_numeric(t) or _tabular_like(t):
|
|
|
|
|
|
|
|
|
105 |
continue
|
106 |
out.append(t)
|
107 |
return " ".join(out)
|
|
|
122 |
non_ascii_ratio = sum(ord(c) > 127 for c in s) / max(1, len(s))
|
123 |
return has_az or non_ascii_ratio > 0.15
|
124 |
|
125 |
+
# ---------------- RAG Core ----------------
|
126 |
class SimpleRAG:
|
127 |
def __init__(
|
128 |
self,
|
|
|
142 |
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim)
|
143 |
self.chunks: List[str] = []
|
144 |
self.last_added: List[str] = []
|
145 |
+
self._translator = None # lazy init
|
146 |
|
147 |
self._load()
|
148 |
|
|
|
176 |
pages: List[str] = []
|
177 |
for p in reader.pages:
|
178 |
t = p.extract_text() or ""
|
179 |
+
# normalizasiya ardıcıllığı
|
180 |
+
t = _ftfy(t)
|
181 |
+
t = _fix_mojibake(t)
|
182 |
+
t = _fix_intra_word_spaces(t)
|
183 |
+
t = re.sub(r"\s+", " ", t).strip()
|
184 |
+
if t:
|
185 |
pages.append(t)
|
|
|
186 |
chunks: List[str] = []
|
187 |
for txt in pages:
|
188 |
for i in range(0, len(txt), step):
|
189 |
+
part = txt[i : i + step].strip()
|
190 |
if part:
|
191 |
chunks.append(part)
|
192 |
+
return chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
# ---------- Indexing ----------
|
195 |
def add_pdf(self, pdf_path: Path) -> int:
|
|
|
272 |
if not contexts and self.is_empty:
|
273 |
return "No relevant context found. Index is empty — upload a PDF first."
|
274 |
|
275 |
+
# konteksləri də təmizlə
|
276 |
+
contexts = [
|
277 |
+
re.sub(r"\s+", " ", _fix_intra_word_spaces(_fix_mojibake(_ftfy(c)))).strip()
|
278 |
+
for c in (contexts or [])
|
279 |
+
]
|
280 |
|
281 |
+
# Yaxın kontekstlərdən namizədlər
|
282 |
local_pool: List[str] = []
|
283 |
for c in (contexts or [])[:5]:
|
284 |
cleaned = _clean_for_summary(c)
|
|
|
290 |
continue
|
291 |
local_pool.append(" ".join(w))
|
292 |
|
|
|
293 |
selected: List[str] = []
|
294 |
if local_pool:
|
295 |
q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
|
|
|
304 |
if len(selected) >= max_sentences:
|
305 |
break
|
306 |
|
|
|
307 |
if not selected:
|
308 |
selected = self._keyword_fallback(question, self.chunks, limit_sentences=max_sentences)
|
309 |
|
310 |
if not selected:
|
311 |
return "No readable sentences matched the question. Try a more specific query."
|
312 |
|
313 |
+
# EN istəyə uyğun tərcümə
|
314 |
+
if OUTPUT_LANG == "en" and any(ord(ch) > 127 for ch in " ".join(selected)):
|
315 |
selected = self._translate_to_en(selected)
|
316 |
|
317 |
bullets = "\n".join(f"- {s}" for s in selected)
|