Spaces:
Running
Running
Commit
·
4448508
1
Parent(s):
0a78f5f
RAG: fix mojibake via ftfy; descoped-mode to keep tabular lines; better AZ→EN handling
Browse files- app/rag_system.py +83 -112
app/rag_system.py
CHANGED
@@ -8,147 +8,117 @@ from typing import List, Tuple
|
|
8 |
|
9 |
import faiss
|
10 |
import numpy as np
|
11 |
-
from ftfy import fix_text
|
12 |
|
13 |
# Prefer pypdf; fallback to PyPDF2 if needed
|
14 |
try:
|
15 |
from pypdf import PdfReader
|
16 |
-
except Exception:
|
17 |
from PyPDF2 import PdfReader # type: ignore
|
18 |
|
19 |
from sentence_transformers import SentenceTransformer
|
|
|
20 |
|
21 |
-
|
22 |
-
# ===================== Paths & Cache (HF-safe) =====================
|
23 |
-
# Writable base in HF Spaces is /app. Allow ENV overrides for local runs.
|
24 |
ROOT_DIR = Path(os.getenv("APP_ROOT", "/app"))
|
25 |
DATA_DIR = Path(os.getenv("DATA_DIR", str(ROOT_DIR / "data")))
|
26 |
UPLOAD_DIR = Path(os.getenv("UPLOAD_DIR", str(DATA_DIR / "uploads")))
|
27 |
INDEX_DIR = Path(os.getenv("INDEX_DIR", str(DATA_DIR / "index")))
|
28 |
-
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache")))
|
29 |
|
30 |
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR):
|
31 |
d.mkdir(parents=True, exist_ok=True)
|
32 |
|
33 |
-
|
34 |
-
# ============================= Config ==============================
|
35 |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
36 |
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower()
|
37 |
|
38 |
-
|
39 |
-
# ============================ Helpers ==============================
|
40 |
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ")
|
41 |
NUM_TOKEN_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
|
42 |
|
43 |
-
STOPWORDS = {
|
44 |
-
"the","a","an","and","or","of","to","in","on","for","with","by",
|
45 |
-
"this","that","these","those","is","are","was","were","be","been","being",
|
46 |
-
"at","as","it","its","from","into","about","over","after","before","than",
|
47 |
-
"such","can","could","should","would","may","might","will","shall"
|
48 |
-
}
|
49 |
-
|
50 |
AZ_LATIN = "A-Za-zƏəĞğİıÖöŞşÇç"
|
51 |
_SINGLE_LETTER_RUN = re.compile(rf"\b(?:[{AZ_LATIN}]\s+){{2,}}[{AZ_LATIN}]\b")
|
52 |
|
53 |
-
KEYWORD_HINTS = [
|
54 |
-
"descoped", "out of scope", "exclude", "excluded", "scope change",
|
55 |
-
"çıxar", "çıxarılan", "daxil deyil", "kənar", "silin", "dəyişiklik",
|
56 |
-
]
|
57 |
-
|
58 |
-
|
59 |
-
def _fix_mojibake(s: str) -> str:
|
60 |
-
"""Fix common UTF-8-as-Latin-1 mojibake artifacts."""
|
61 |
-
if not s:
|
62 |
-
return s
|
63 |
-
if any(ch in s for ch in ("Ã", "Ä", "Å", "Ð", "Þ", "þ")):
|
64 |
-
try:
|
65 |
-
return s.encode("latin-1", "ignore").decode("utf-8", "ignore")
|
66 |
-
except Exception:
|
67 |
-
return s
|
68 |
-
return s
|
69 |
-
|
70 |
-
|
71 |
def _fix_intra_word_spaces(s: str) -> str:
|
72 |
-
"
|
73 |
if not s:
|
74 |
return s
|
75 |
return _SINGLE_LETTER_RUN.sub(lambda m: re.sub(r"\s+", "", m.group(0)), s)
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
def _split_sentences(text: str) -> List[str]:
|
85 |
-
|
86 |
-
return [s.strip() for s in re.split(r'(?<=[\.\!\?])\s+|[\r\n]+', text) if s.strip()]
|
87 |
-
|
88 |
|
89 |
def _mostly_numeric(s: str) -> bool:
|
90 |
-
"""Treat a line as numeric/tabular if >60% of alnum chars are digits."""
|
91 |
alnum = [c for c in s if c.isalnum()]
|
92 |
if not alnum:
|
93 |
return True
|
94 |
digits = sum(c.isdigit() for c in alnum)
|
95 |
-
return digits / max(1, len(alnum)) > 0.
|
96 |
-
|
97 |
|
98 |
def _tabular_like(s: str) -> bool:
|
99 |
-
"""Heuristic for table-ish lines; relax threshold so we don't drop everything."""
|
100 |
hits = len(NUM_TOKEN_RE.findall(s))
|
101 |
-
return hits >=
|
102 |
-
|
103 |
|
104 |
def _clean_for_summary(text: str) -> str:
|
105 |
out = []
|
106 |
for ln in text.splitlines():
|
107 |
t = " ".join(ln.split())
|
|
|
108 |
if not t or _mostly_numeric(t) or _tabular_like(t):
|
109 |
continue
|
110 |
out.append(t)
|
111 |
return " ".join(out)
|
112 |
|
113 |
-
|
114 |
def _sim_jaccard(a: str, b: str) -> float:
|
115 |
-
aw = set(a.lower().split())
|
116 |
-
bw = set(b.lower().split())
|
117 |
if not aw or not bw:
|
118 |
return 0.0
|
119 |
return len(aw & bw) / len(aw | bw)
|
120 |
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
122 |
def _keywords(text: str) -> List[str]:
|
123 |
toks = re.findall(r"[A-Za-zÀ-ÖØ-öø-ÿ0-9]+", text.lower())
|
124 |
return [t for t in toks if t not in STOPWORDS and len(t) > 2]
|
125 |
|
126 |
-
|
127 |
def _looks_azerbaijani(s: str) -> bool:
|
128 |
has_az = any(ch in AZ_CHARS for ch in s)
|
129 |
non_ascii_ratio = sum(ord(c) > 127 for c in s) / max(1, len(s))
|
130 |
return has_az or non_ascii_ratio > 0.15
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
def
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
t = fix_text(_fix_intra_word_spaces(_fix_word_breaks(_fix_mojibake(text))))
|
139 |
-
for line in t.splitlines():
|
140 |
-
s = " ".join(line.split())
|
141 |
-
if not s or len(s.split()) < 4:
|
142 |
-
continue
|
143 |
-
lo = s.lower()
|
144 |
-
if any(k in lo for k in keys):
|
145 |
-
hits.append(s)
|
146 |
-
if len(hits) >= limit:
|
147 |
-
return hits
|
148 |
-
return hits
|
149 |
-
|
150 |
|
151 |
-
#
|
152 |
class SimpleRAG:
|
153 |
def __init__(
|
154 |
self,
|
@@ -168,7 +138,7 @@ class SimpleRAG:
|
|
168 |
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim)
|
169 |
self.chunks: List[str] = []
|
170 |
self.last_added: List[str] = []
|
171 |
-
self._translator = None # lazy
|
172 |
|
173 |
self._load()
|
174 |
|
@@ -202,13 +172,9 @@ class SimpleRAG:
|
|
202 |
pages: List[str] = []
|
203 |
for p in reader.pages:
|
204 |
t = p.extract_text() or ""
|
|
|
205 |
if t.strip():
|
206 |
-
t = _fix_mojibake(t)
|
207 |
-
t = fix_text(t)
|
208 |
-
t = _fix_word_breaks(t)
|
209 |
-
t = _fix_intra_word_spaces(t)
|
210 |
pages.append(t)
|
211 |
-
|
212 |
chunks: List[str] = []
|
213 |
for txt in pages:
|
214 |
for i in range(0, len(txt), step):
|
@@ -259,33 +225,35 @@ class SimpleRAG:
|
|
259 |
device=-1,
|
260 |
)
|
261 |
outs = self._translator(texts, max_length=400)
|
262 |
-
return [o["translation_text"].strip() for o in outs]
|
263 |
except Exception:
|
264 |
return texts
|
265 |
|
266 |
# ---------- Fallbacks ----------
|
267 |
-
def _keyword_fallback(self, question: str, pool: List[str], limit_sentences: int = 4) -> List[str]:
|
268 |
qk = set(_keywords(question))
|
269 |
if not qk:
|
270 |
return []
|
271 |
candidates: List[Tuple[float, str]] = []
|
272 |
-
for text in pool[:
|
273 |
-
cleaned =
|
274 |
for s in _split_sentences(cleaned):
|
275 |
-
if
|
276 |
-
|
|
|
277 |
toks = set(_keywords(s))
|
278 |
if not toks:
|
279 |
continue
|
280 |
overlap = len(qk & toks)
|
281 |
-
if overlap == 0:
|
282 |
continue
|
283 |
-
length_penalty = max(
|
284 |
-
score = overlap + min(0.5, overlap / length_penalty)
|
285 |
candidates.append((score, s))
|
286 |
candidates.sort(key=lambda x: x[0], reverse=True)
|
287 |
out: List[str] = []
|
288 |
for _, s in candidates:
|
|
|
289 |
if any(_sim_jaccard(s, t) >= 0.82 for t in out):
|
290 |
continue
|
291 |
out.append(s)
|
@@ -298,19 +266,24 @@ class SimpleRAG:
|
|
298 |
if not contexts and self.is_empty:
|
299 |
return "No relevant context found. Index is empty — upload a PDF first."
|
300 |
|
301 |
-
|
302 |
-
contexts = [fix_text(_fix_intra_word_spaces(_fix_word_breaks(_fix_mojibake(c or "")))) for c in (contexts or [])]
|
303 |
|
304 |
-
# Build candidate sentences from nearby contexts
|
305 |
local_pool: List[str] = []
|
306 |
-
|
307 |
-
|
|
|
308 |
for s in _split_sentences(cleaned):
|
309 |
w = s.split()
|
310 |
-
if not (8 <= len(w) <= 35):
|
311 |
-
continue
|
312 |
-
if _tabular_like(s) or _mostly_numeric(s):
|
313 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
local_pool.append(" ".join(w))
|
315 |
|
316 |
selected: List[str] = []
|
@@ -320,34 +293,32 @@ class SimpleRAG:
|
|
320 |
scores = (cand_emb @ q_emb.T).ravel()
|
321 |
order = np.argsort(-scores)
|
322 |
for i in order:
|
323 |
-
s = local_pool[i].strip()
|
324 |
if any(_sim_jaccard(s, t) >= 0.82 for t in selected):
|
325 |
continue
|
326 |
selected.append(s)
|
327 |
if len(selected) >= max_sentences:
|
328 |
break
|
329 |
|
330 |
-
# keyword-based sentence-level selection across corpus
|
331 |
if not selected:
|
332 |
-
selected = self._keyword_fallback(
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
|
|
337 |
|
338 |
if not selected:
|
339 |
return "No readable sentences matched the question. Try a more specific query."
|
340 |
|
341 |
-
#
|
342 |
-
if OUTPUT_LANG == "en"
|
343 |
-
|
|
|
|
|
344 |
|
345 |
bullets = "\n".join(f"- {s}" for s in selected)
|
346 |
return f"Answer (based on document context):\n{bullets}"
|
347 |
|
348 |
|
349 |
-
__all__ = [
|
350 |
-
"SimpleRAG",
|
351 |
-
"UPLOAD_DIR",
|
352 |
-
"INDEX_DIR",
|
353 |
-
]
|
|
|
8 |
|
9 |
import faiss
|
10 |
import numpy as np
|
|
|
11 |
|
12 |
# Prefer pypdf; fallback to PyPDF2 if needed
|
13 |
try:
|
14 |
from pypdf import PdfReader
|
15 |
+
except Exception:
|
16 |
from PyPDF2 import PdfReader # type: ignore
|
17 |
|
18 |
from sentence_transformers import SentenceTransformer
|
19 |
+
from ftfy import fix_text
|
20 |
|
21 |
+
# ---------------- Paths & Cache (HF-safe) ----------------
|
|
|
|
|
22 |
ROOT_DIR = Path(os.getenv("APP_ROOT", "/app"))
|
23 |
DATA_DIR = Path(os.getenv("DATA_DIR", str(ROOT_DIR / "data")))
|
24 |
UPLOAD_DIR = Path(os.getenv("UPLOAD_DIR", str(DATA_DIR / "uploads")))
|
25 |
INDEX_DIR = Path(os.getenv("INDEX_DIR", str(DATA_DIR / "index")))
|
26 |
+
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache")))
|
27 |
|
28 |
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR):
|
29 |
d.mkdir(parents=True, exist_ok=True)
|
30 |
|
31 |
+
# ---------------- Config ----------------
|
|
|
32 |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
33 |
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower()
|
34 |
|
35 |
+
# ---------------- Helpers ----------------
|
|
|
36 |
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ")
|
37 |
NUM_TOKEN_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
AZ_LATIN = "A-Za-zƏəĞğİıÖöŞşÇç"
|
40 |
_SINGLE_LETTER_RUN = re.compile(rf"\b(?:[{AZ_LATIN}]\s+){{2,}}[{AZ_LATIN}]\b")
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def _fix_intra_word_spaces(s: str) -> str:
|
43 |
+
# "H Ə F T Ə" -> "HƏFTƏ"
|
44 |
if not s:
|
45 |
return s
|
46 |
return _SINGLE_LETTER_RUN.sub(lambda m: re.sub(r"\s+", "", m.group(0)), s)
|
47 |
|
48 |
+
def _fix_mojibake(s: str) -> str:
|
49 |
+
# Try to undo latin-1/utf-8 mess, then ftfy as final pass
|
50 |
+
if not s:
|
51 |
+
return s
|
52 |
+
try:
|
53 |
+
if any(ch in s for ch in ("Ã", "Ä", "Å", "Ð", "Þ", "þ")):
|
54 |
+
s = s.encode("latin-1", "ignore").decode("utf-8", "ignore")
|
55 |
+
except Exception:
|
56 |
+
pass
|
57 |
+
s = fix_text(s)
|
58 |
+
s = _fix_intra_word_spaces(s)
|
59 |
+
return s
|
60 |
|
61 |
def _split_sentences(text: str) -> List[str]:
|
62 |
+
return [s.strip() for s in re.split(r"(?<=[\.!\?])\s+|[\r\n]+", text) if s.strip()]
|
|
|
|
|
63 |
|
64 |
def _mostly_numeric(s: str) -> bool:
|
|
|
65 |
alnum = [c for c in s if c.isalnum()]
|
66 |
if not alnum:
|
67 |
return True
|
68 |
digits = sum(c.isdigit() for c in alnum)
|
69 |
+
return digits / max(1, len(alnum)) > 0.3
|
|
|
70 |
|
71 |
def _tabular_like(s: str) -> bool:
|
|
|
72 |
hits = len(NUM_TOKEN_RE.findall(s))
|
73 |
+
return hits >= 2 or "Page" in s or len(s) < 20
|
|
|
74 |
|
75 |
def _clean_for_summary(text: str) -> str:
|
76 |
out = []
|
77 |
for ln in text.splitlines():
|
78 |
t = " ".join(ln.split())
|
79 |
+
t = _fix_mojibake(t)
|
80 |
if not t or _mostly_numeric(t) or _tabular_like(t):
|
81 |
continue
|
82 |
out.append(t)
|
83 |
return " ".join(out)
|
84 |
|
|
|
85 |
def _sim_jaccard(a: str, b: str) -> float:
|
86 |
+
aw = set(a.lower().split()); bw = set(b.lower().split())
|
|
|
87 |
if not aw or not bw:
|
88 |
return 0.0
|
89 |
return len(aw & bw) / len(aw | bw)
|
90 |
|
91 |
+
STOPWORDS = {
|
92 |
+
"the","a","an","and","or","of","to","in","on","for","with","by",
|
93 |
+
"this","that","these","those","is","are","was","were","be","been","being",
|
94 |
+
"at","as","it","its","from","into","about","over","after","before","than",
|
95 |
+
"such","can","could","should","would","may","might","will","shall"
|
96 |
+
}
|
97 |
def _keywords(text: str) -> List[str]:
|
98 |
toks = re.findall(r"[A-Za-zÀ-ÖØ-öø-ÿ0-9]+", text.lower())
|
99 |
return [t for t in toks if t not in STOPWORDS and len(t) > 2]
|
100 |
|
|
|
101 |
def _looks_azerbaijani(s: str) -> bool:
|
102 |
has_az = any(ch in AZ_CHARS for ch in s)
|
103 |
non_ascii_ratio = sum(ord(c) > 127 for c in s) / max(1, len(s))
|
104 |
return has_az or non_ascii_ratio > 0.15
|
105 |
|
106 |
+
# ---- Descoped/out-of-scope heuristics ----
|
107 |
+
DESCOPED_KWS = [
|
108 |
+
"descoped","out of scope","out-of-scope","exclude","excluded","exclusion",
|
109 |
+
"çıxarılan","çıxarıl","çıxarıldı","daxil deyil","sökül","demontaj","kəsilmə",
|
110 |
+
]
|
111 |
+
def _descoped_mode(question: str) -> bool:
|
112 |
+
ql = (question or "").lower()
|
113 |
+
return any(k in ql for k in DESCOPED_KWS) or "descop" in ql
|
114 |
|
115 |
+
def _is_descoped_line(s: str) -> bool:
|
116 |
+
sl = s.lower()
|
117 |
+
if any(k in sl for k in DESCOPED_KWS):
|
118 |
+
return True
|
119 |
+
return bool(re.search(r"\b(out[-\s]?of[-\s]?scope|descop)", sl))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
# ---------------- RAG Core ----------------
|
122 |
class SimpleRAG:
|
123 |
def __init__(
|
124 |
self,
|
|
|
138 |
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim)
|
139 |
self.chunks: List[str] = []
|
140 |
self.last_added: List[str] = []
|
141 |
+
self._translator = None # lazy
|
142 |
|
143 |
self._load()
|
144 |
|
|
|
172 |
pages: List[str] = []
|
173 |
for p in reader.pages:
|
174 |
t = p.extract_text() or ""
|
175 |
+
t = _fix_mojibake(t)
|
176 |
if t.strip():
|
|
|
|
|
|
|
|
|
177 |
pages.append(t)
|
|
|
178 |
chunks: List[str] = []
|
179 |
for txt in pages:
|
180 |
for i in range(0, len(txt), step):
|
|
|
225 |
device=-1,
|
226 |
)
|
227 |
outs = self._translator(texts, max_length=400)
|
228 |
+
return [fix_text(o["translation_text"].strip()) for o in outs]
|
229 |
except Exception:
|
230 |
return texts
|
231 |
|
232 |
# ---------- Fallbacks ----------
|
233 |
+
def _keyword_fallback(self, question: str, pool: List[str], limit_sentences: int = 4, allow_numeric: bool = False) -> List[str]:
|
234 |
qk = set(_keywords(question))
|
235 |
if not qk:
|
236 |
return []
|
237 |
candidates: List[Tuple[float, str]] = []
|
238 |
+
for text in pool[:400]:
|
239 |
+
cleaned = _fix_mojibake(" ".join(text.split()))
|
240 |
for s in _split_sentences(cleaned):
|
241 |
+
if not allow_numeric:
|
242 |
+
if _tabular_like(s) or _mostly_numeric(s):
|
243 |
+
continue
|
244 |
toks = set(_keywords(s))
|
245 |
if not toks:
|
246 |
continue
|
247 |
overlap = len(qk & toks)
|
248 |
+
if overlap == 0 and not _is_descoped_line(s):
|
249 |
continue
|
250 |
+
length_penalty = max(6, min(60, len(s.split())))
|
251 |
+
score = overlap + (0.3 if _is_descoped_line(s) else 0.0) + min(0.5, overlap / length_penalty)
|
252 |
candidates.append((score, s))
|
253 |
candidates.sort(key=lambda x: x[0], reverse=True)
|
254 |
out: List[str] = []
|
255 |
for _, s in candidates:
|
256 |
+
s = fix_text(s).strip()
|
257 |
if any(_sim_jaccard(s, t) >= 0.82 for t in out):
|
258 |
continue
|
259 |
out.append(s)
|
|
|
266 |
if not contexts and self.is_empty:
|
267 |
return "No relevant context found. Index is empty — upload a PDF first."
|
268 |
|
269 |
+
desc_mode = _descoped_mode(question)
|
|
|
270 |
|
271 |
+
# Build candidate sentences from nearby contexts
|
272 |
local_pool: List[str] = []
|
273 |
+
scan_n = 8 if desc_mode else 5
|
274 |
+
for c in (contexts or [])[:scan_n]:
|
275 |
+
cleaned = _fix_mojibake(" ".join(c.split()))
|
276 |
for s in _split_sentences(cleaned):
|
277 |
w = s.split()
|
278 |
+
if not ( (6 if desc_mode else 8) <= len(w) <= (60 if desc_mode else 35) ):
|
|
|
|
|
279 |
continue
|
280 |
+
if not desc_mode:
|
281 |
+
if _tabular_like(s) or _mostly_numeric(s):
|
282 |
+
continue
|
283 |
+
else:
|
284 |
+
# allow numeric/tabular if it looks like descoped line
|
285 |
+
if not _is_descoped_line(s) and (_tabular_like(s) or _mostly_numeric(s)):
|
286 |
+
continue
|
287 |
local_pool.append(" ".join(w))
|
288 |
|
289 |
selected: List[str] = []
|
|
|
293 |
scores = (cand_emb @ q_emb.T).ravel()
|
294 |
order = np.argsort(-scores)
|
295 |
for i in order:
|
296 |
+
s = fix_text(local_pool[i]).strip()
|
297 |
if any(_sim_jaccard(s, t) >= 0.82 for t in selected):
|
298 |
continue
|
299 |
selected.append(s)
|
300 |
if len(selected) >= max_sentences:
|
301 |
break
|
302 |
|
|
|
303 |
if not selected:
|
304 |
+
selected = self._keyword_fallback(
|
305 |
+
question,
|
306 |
+
self.chunks,
|
307 |
+
limit_sentences=max_sentences,
|
308 |
+
allow_numeric=desc_mode, # relax numeric filter for descoped Qs
|
309 |
+
)
|
310 |
|
311 |
if not selected:
|
312 |
return "No readable sentences matched the question. Try a more specific query."
|
313 |
|
314 |
+
# Translate to EN if needed (and requested)
|
315 |
+
if OUTPUT_LANG == "en":
|
316 |
+
needs_tr = any(_looks_azerbaijani(s) for s in selected) or any(ch in "".join(selected) for ch in ("Ã","Ä","Þ"))
|
317 |
+
if needs_tr:
|
318 |
+
selected = self._translate_to_en(selected)
|
319 |
|
320 |
bullets = "\n".join(f"- {s}" for s in selected)
|
321 |
return f"Answer (based on document context):\n{bullets}"
|
322 |
|
323 |
|
324 |
+
__all__ = ["SimpleRAG", "UPLOAD_DIR", "INDEX_DIR"]
|
|
|
|
|
|
|
|