Spaces:
Sleeping
Sleeping
Update app/api.py
Browse files- app/api.py +200 -16
app/api.py
CHANGED
@@ -1,14 +1,24 @@
|
|
1 |
# app/api.py
|
2 |
-
from
|
3 |
|
4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from fastapi import FastAPI, UploadFile, File, HTTPException
|
6 |
from fastapi.middleware.cors import CORSMiddleware
|
7 |
from fastapi.responses import JSONResponse, RedirectResponse
|
8 |
-
from pydantic import BaseModel
|
9 |
|
10 |
from .rag_system import SimpleRAG, UPLOAD_DIR, INDEX_DIR
|
11 |
|
|
|
|
|
|
|
12 |
app = FastAPI(title="RAG API", version="1.3.0")
|
13 |
|
14 |
app.add_middleware(
|
@@ -21,23 +31,148 @@ app.add_middleware(
|
|
21 |
|
22 |
rag = SimpleRAG()
|
23 |
|
24 |
-
#
|
|
|
|
|
25 |
class UploadResponse(BaseModel):
|
26 |
filename: str
|
27 |
chunks_added: int
|
28 |
|
29 |
class AskRequest(BaseModel):
|
30 |
-
question: str
|
31 |
-
top_k: int = 5
|
32 |
|
33 |
class AskResponse(BaseModel):
|
34 |
answer: str
|
35 |
contexts: List[str]
|
36 |
|
|
|
|
|
|
|
|
|
37 |
class HistoryResponse(BaseModel):
|
38 |
total_chunks: int
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
@app.get("/")
|
42 |
def root():
|
43 |
return RedirectResponse(url="/docs")
|
@@ -56,9 +191,11 @@ def debug_translate():
|
|
56 |
except Exception as e:
|
57 |
return JSONResponse(status_code=500, content={"ok": False, "error": str(e)})
|
58 |
|
59 |
-
# ---------- Core ----------
|
60 |
@app.post("/upload_pdf", response_model=UploadResponse)
|
61 |
async def upload_pdf(file: UploadFile = File(...)):
|
|
|
|
|
|
|
62 |
dest = UPLOAD_DIR / file.filename
|
63 |
with open(dest, "wb") as f:
|
64 |
while True:
|
@@ -66,30 +203,71 @@ async def upload_pdf(file: UploadFile = File(...)):
|
|
66 |
if not chunk:
|
67 |
break
|
68 |
f.write(chunk)
|
|
|
69 |
added = rag.add_pdf(dest)
|
70 |
if added == 0:
|
71 |
-
# Clear message for scanned/empty PDFs
|
72 |
raise HTTPException(status_code=400, detail="No extractable text found (likely a scanned image PDF).")
|
|
|
|
|
73 |
return UploadResponse(filename=file.filename, chunks_added=added)
|
74 |
|
75 |
@app.post("/ask_question", response_model=AskResponse)
|
76 |
def ask_question(payload: AskRequest):
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
@app.get("/get_history", response_model=HistoryResponse)
|
83 |
def get_history():
|
84 |
-
return HistoryResponse(
|
|
|
|
|
|
|
85 |
|
86 |
@app.get("/stats")
|
87 |
-
def
|
|
|
88 |
return {
|
|
|
|
|
|
|
|
|
89 |
"total_chunks": len(rag.chunks),
|
90 |
"faiss_ntotal": int(getattr(rag.index, "ntotal", 0)),
|
91 |
"model_dim": int(getattr(rag.index, "d", rag.embed_dim)),
|
92 |
-
"last_added_chunks": len(rag
|
93 |
"version": app.version,
|
94 |
}
|
95 |
|
@@ -104,6 +282,12 @@ def reset_index():
|
|
104 |
os.remove(p)
|
105 |
except FileNotFoundError:
|
106 |
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
return {"ok": True}
|
108 |
except Exception as e:
|
109 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
# app/api.py
|
2 |
+
from __future__ import annotations
|
3 |
|
4 |
+
from typing import List, Optional
|
5 |
+
from collections import deque
|
6 |
+
from datetime import datetime
|
7 |
+
from time import perf_counter
|
8 |
+
import re
|
9 |
+
import os
|
10 |
+
|
11 |
+
import faiss
|
12 |
from fastapi import FastAPI, UploadFile, File, HTTPException
|
13 |
from fastapi.middleware.cors import CORSMiddleware
|
14 |
from fastapi.responses import JSONResponse, RedirectResponse
|
15 |
+
from pydantic import BaseModel, Field
|
16 |
|
17 |
from .rag_system import SimpleRAG, UPLOAD_DIR, INDEX_DIR
|
18 |
|
19 |
+
# ------------------------------------------------------------------------------
|
20 |
+
# App setup
|
21 |
+
# ------------------------------------------------------------------------------
|
22 |
app = FastAPI(title="RAG API", version="1.3.0")
|
23 |
|
24 |
app.add_middleware(
|
|
|
31 |
|
32 |
rag = SimpleRAG()
|
33 |
|
34 |
+
# ------------------------------------------------------------------------------
|
35 |
+
# Models
|
36 |
+
# ------------------------------------------------------------------------------
|
37 |
class UploadResponse(BaseModel):
|
38 |
filename: str
|
39 |
chunks_added: int
|
40 |
|
41 |
class AskRequest(BaseModel):
|
42 |
+
question: str = Field(..., min_length=1)
|
43 |
+
top_k: int = Field(5, ge=1, le=20)
|
44 |
|
45 |
class AskResponse(BaseModel):
|
46 |
answer: str
|
47 |
contexts: List[str]
|
48 |
|
49 |
+
class HistoryItem(BaseModel):
|
50 |
+
question: str
|
51 |
+
timestamp: str
|
52 |
+
|
53 |
class HistoryResponse(BaseModel):
|
54 |
total_chunks: int
|
55 |
+
history: List[HistoryItem] = []
|
56 |
+
|
57 |
+
# ------------------------------------------------------------------------------
|
58 |
+
# Lightweight stats store (in-memory)
|
59 |
+
# ------------------------------------------------------------------------------
|
60 |
+
class StatsStore:
|
61 |
+
def __init__(self):
|
62 |
+
self.documents_indexed = 0
|
63 |
+
self.questions_answered = 0
|
64 |
+
self.latencies_ms = deque(maxlen=500)
|
65 |
+
# Mon..Sun simple counter (index 0 = today for simplicity)
|
66 |
+
self.last7_questions = deque([0] * 7, maxlen=7)
|
67 |
+
self.history = deque(maxlen=50) # recent questions
|
68 |
+
|
69 |
+
def add_docs(self, n: int):
|
70 |
+
if n > 0:
|
71 |
+
self.documents_indexed += n
|
72 |
+
|
73 |
+
def add_question(self, latency_ms: Optional[int] = None, q: Optional[str] = None):
|
74 |
+
self.questions_answered += 1
|
75 |
+
if latency_ms is not None:
|
76 |
+
self.latencies_ms.append(int(latency_ms))
|
77 |
+
if len(self.last7_questions) < 7:
|
78 |
+
self.last7_questions.appendleft(1)
|
79 |
+
else:
|
80 |
+
# attribute to "today" bucket
|
81 |
+
self.last7_questions[0] += 1
|
82 |
+
if q:
|
83 |
+
self.history.appendleft(
|
84 |
+
{"question": q, "timestamp": datetime.utcnow().isoformat()}
|
85 |
+
)
|
86 |
+
|
87 |
+
@property
|
88 |
+
def avg_ms(self) -> int:
|
89 |
+
return int(sum(self.latencies_ms) / len(self.latencies_ms)) if self.latencies_ms else 0
|
90 |
+
|
91 |
+
stats = StatsStore()
|
92 |
+
|
93 |
+
# ------------------------------------------------------------------------------
|
94 |
+
# Helpers
|
95 |
+
# ------------------------------------------------------------------------------
|
96 |
+
_GENERIC_PATTERNS = [
|
97 |
+
r"\bbased on document context\b",
|
98 |
+
r"\bappears to be\b",
|
99 |
+
r"\bgeneral (?:summary|overview)\b",
|
100 |
+
]
|
101 |
+
|
102 |
+
_STOPWORDS = {
|
103 |
+
"the","a","an","of","for","and","or","in","on","to","from","with","by","is","are",
|
104 |
+
"was","were","be","been","being","at","as","that","this","these","those","it",
|
105 |
+
"its","into","than","then","so","such","about","over","per","via","vs","within"
|
106 |
+
}
|
107 |
+
|
108 |
+
def is_generic_answer(text: str) -> bool:
|
109 |
+
if not text:
|
110 |
+
return True
|
111 |
+
low = text.strip().lower()
|
112 |
+
if len(low) < 15:
|
113 |
+
return True
|
114 |
+
for pat in _GENERIC_PATTERNS:
|
115 |
+
if re.search(pat, low):
|
116 |
+
return True
|
117 |
+
return False
|
118 |
+
|
119 |
+
def tokenize(s: str) -> List[str]:
|
120 |
+
return [w for w in re.findall(r"[a-zA-Z0-9]+", s.lower()) if w and w not in _STOPWORDS and len(w) > 2]
|
121 |
+
|
122 |
+
def extractive_answer(question: str, contexts: List[str], max_chars: int = 500) -> str:
|
123 |
+
"""
|
124 |
+
Simple keyword-based extractive fallback:
|
125 |
+
pick sentences containing most question tokens.
|
126 |
+
"""
|
127 |
+
if not contexts:
|
128 |
+
return "I couldn't find relevant information in the indexed documents for this question."
|
129 |
+
|
130 |
+
q_tokens = set(tokenize(question))
|
131 |
+
if not q_tokens:
|
132 |
+
# if question is e.g. numbers only
|
133 |
+
q_tokens = set(tokenize(" ".join(contexts[:1])))
|
134 |
+
|
135 |
+
# split into sentences
|
136 |
+
sentences: List[str] = []
|
137 |
+
for c in contexts:
|
138 |
+
c = c or ""
|
139 |
+
# rough sentence split
|
140 |
+
for s in re.split(r"(?<=[\.!\?])\s+|\n+", c.strip()):
|
141 |
+
s = s.strip()
|
142 |
+
if s:
|
143 |
+
sentences.append(s)
|
144 |
+
|
145 |
+
if not sentences:
|
146 |
+
# fallback to first context chunk
|
147 |
+
return (contexts[0] or "")[:max_chars]
|
148 |
+
|
149 |
+
# score sentences
|
150 |
+
scored: List[tuple[int, str]] = []
|
151 |
+
for s in sentences:
|
152 |
+
toks = set(tokenize(s))
|
153 |
+
score = len(q_tokens & toks)
|
154 |
+
scored.append((score, s))
|
155 |
|
156 |
+
# pick top sentences with score > 0, otherwise first few sentences
|
157 |
+
scored.sort(key=lambda x: (x[0], len(x[1])), reverse=True)
|
158 |
+
picked: List[str] = []
|
159 |
+
|
160 |
+
for score, sent in scored:
|
161 |
+
if score <= 0 and picked:
|
162 |
+
break
|
163 |
+
if len(" ".join(picked) + " " + sent) > max_chars:
|
164 |
+
break
|
165 |
+
picked.append(sent)
|
166 |
+
|
167 |
+
if not picked:
|
168 |
+
# no overlap, take first ~max_chars from contexts
|
169 |
+
return (contexts[0] or "")[:max_chars]
|
170 |
+
|
171 |
+
return " ".join(picked).strip()
|
172 |
+
|
173 |
+
# ------------------------------------------------------------------------------
|
174 |
+
# Routes
|
175 |
+
# ------------------------------------------------------------------------------
|
176 |
@app.get("/")
|
177 |
def root():
|
178 |
return RedirectResponse(url="/docs")
|
|
|
191 |
except Exception as e:
|
192 |
return JSONResponse(status_code=500, content={"ok": False, "error": str(e)})
|
193 |
|
|
|
194 |
@app.post("/upload_pdf", response_model=UploadResponse)
|
195 |
async def upload_pdf(file: UploadFile = File(...)):
|
196 |
+
if not file.filename.lower().endswith(".pdf"):
|
197 |
+
raise HTTPException(status_code=400, detail="Only PDF files are allowed.")
|
198 |
+
|
199 |
dest = UPLOAD_DIR / file.filename
|
200 |
with open(dest, "wb") as f:
|
201 |
while True:
|
|
|
203 |
if not chunk:
|
204 |
break
|
205 |
f.write(chunk)
|
206 |
+
|
207 |
added = rag.add_pdf(dest)
|
208 |
if added == 0:
|
|
|
209 |
raise HTTPException(status_code=400, detail="No extractable text found (likely a scanned image PDF).")
|
210 |
+
|
211 |
+
stats.add_docs(added)
|
212 |
return UploadResponse(filename=file.filename, chunks_added=added)
|
213 |
|
214 |
@app.post("/ask_question", response_model=AskResponse)
|
215 |
def ask_question(payload: AskRequest):
|
216 |
+
q = (payload.question or "").strip()
|
217 |
+
if not q:
|
218 |
+
raise HTTPException(status_code=400, detail="Missing 'question'.")
|
219 |
+
|
220 |
+
k = max(1, int(payload.top_k))
|
221 |
+
t0 = perf_counter()
|
222 |
+
|
223 |
+
# retrieval
|
224 |
+
try:
|
225 |
+
hits = rag.search(q, k=k) # expected: List[Tuple[str, float]]
|
226 |
+
except Exception as e:
|
227 |
+
raise HTTPException(status_code=500, detail=f"Search failed: {e}")
|
228 |
+
|
229 |
+
contexts = [c for c, _ in (hits or []) if c] or (rag.last_added[:k] if getattr(rag, "last_added", None) else [])
|
230 |
+
|
231 |
+
if not contexts:
|
232 |
+
stats.add_question(int((perf_counter() - t0) * 1000), q=q)
|
233 |
+
return AskResponse(
|
234 |
+
answer="I couldn't find relevant information in the indexed documents for this question.",
|
235 |
+
contexts=[]
|
236 |
+
)
|
237 |
+
|
238 |
+
# synthesis (LLM or rule-based inside rag)
|
239 |
+
try:
|
240 |
+
synthesized = rag.synthesize_answer(q, contexts) or ""
|
241 |
+
except Exception:
|
242 |
+
synthesized = ""
|
243 |
+
|
244 |
+
# guard against generic/unchanging answers
|
245 |
+
if is_generic_answer(synthesized):
|
246 |
+
synthesized = extractive_answer(q, contexts, max_chars=600)
|
247 |
+
|
248 |
+
latency_ms = int((perf_counter() - t0) * 1000)
|
249 |
+
stats.add_question(latency_ms, q=q)
|
250 |
+
return AskResponse(answer=synthesized.strip(), contexts=contexts)
|
251 |
|
252 |
@app.get("/get_history", response_model=HistoryResponse)
|
253 |
def get_history():
|
254 |
+
return HistoryResponse(
|
255 |
+
total_chunks=len(rag.chunks),
|
256 |
+
history=[HistoryItem(**h) for h in list(stats.history)]
|
257 |
+
)
|
258 |
|
259 |
@app.get("/stats")
|
260 |
+
def stats_endpoint():
|
261 |
+
# keep backward compat fields + add dashboard-friendly metrics
|
262 |
return {
|
263 |
+
"documents_indexed": stats.documents_indexed,
|
264 |
+
"questions_answered": stats.questions_answered,
|
265 |
+
"avg_ms": stats.avg_ms,
|
266 |
+
"last7_questions": list(stats.last7_questions),
|
267 |
"total_chunks": len(rag.chunks),
|
268 |
"faiss_ntotal": int(getattr(rag.index, "ntotal", 0)),
|
269 |
"model_dim": int(getattr(rag.index, "d", rag.embed_dim)),
|
270 |
+
"last_added_chunks": len(getattr(rag, "last_added", [])),
|
271 |
"version": app.version,
|
272 |
}
|
273 |
|
|
|
282 |
os.remove(p)
|
283 |
except FileNotFoundError:
|
284 |
pass
|
285 |
+
# also reset stats counters to avoid stale analytics
|
286 |
+
stats.documents_indexed = 0
|
287 |
+
stats.questions_answered = 0
|
288 |
+
stats.latencies_ms.clear()
|
289 |
+
stats.last7_questions = deque([0] * 7, maxlen=7)
|
290 |
+
stats.history.clear()
|
291 |
return {"ok": True}
|
292 |
except Exception as e:
|
293 |
raise HTTPException(status_code=500, detail=str(e))
|