Spaces:
Running
Running
Commit
·
88d2e91
1
Parent(s):
a6ffef9
RAG: pdfminer fallback + last-file summary fallback + relaxed filters + fixes
Browse files- app/api.py +3 -1
- app/rag_system.py +55 -23
- requirements.txt +1 -0
app/api.py
CHANGED
@@ -68,12 +68,14 @@ async def upload_pdf(file: UploadFile = File(...)):
|
|
68 |
added = rag.add_pdf(dest)
|
69 |
return UploadResponse(filename=file.filename, chunks_added=added)
|
70 |
|
|
|
71 |
@app.post("/ask_question", response_model=AskResponse)
|
72 |
def ask_question(payload: AskRequest):
|
73 |
hits = rag.search(payload.question, k=max(1, payload.top_k))
|
74 |
contexts = [c for c, _ in hits]
|
|
|
75 |
answer = rag.synthesize_answer(payload.question, contexts)
|
76 |
-
return AskResponse(answer=answer, contexts=contexts)
|
77 |
|
78 |
@app.get("/get_history", response_model=HistoryResponse)
|
79 |
def get_history():
|
|
|
68 |
added = rag.add_pdf(dest)
|
69 |
return UploadResponse(filename=file.filename, chunks_added=added)
|
70 |
|
71 |
+
# app/api.py içində ask_question endpoint
|
72 |
@app.post("/ask_question", response_model=AskResponse)
|
73 |
def ask_question(payload: AskRequest):
|
74 |
hits = rag.search(payload.question, k=max(1, payload.top_k))
|
75 |
contexts = [c for c, _ in hits]
|
76 |
+
# fallback: (optional) burda da son faylı ötürmək olar; synthesize_answer onsuz da edir:
|
77 |
answer = rag.synthesize_answer(payload.question, contexts)
|
78 |
+
return AskResponse(answer=answer, contexts=contexts or rag.last_added[:5])
|
79 |
|
80 |
@app.get("/get_history", response_model=HistoryResponse)
|
81 |
def get_history():
|
app/rag_system.py
CHANGED
@@ -23,6 +23,10 @@ OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower()
|
|
23 |
|
24 |
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ")
|
25 |
NUM_TOK_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def _split_sentences(text: str) -> List[str]:
|
28 |
return [s.strip() for s in re.split(r'(?<=[.!?])\s+|[\r\n]+', text) if s.strip()]
|
@@ -36,7 +40,7 @@ def _mostly_numeric(s: str) -> bool:
|
|
36 |
|
37 |
def _tabular_like(s: str) -> bool:
|
38 |
hits = len(NUM_TOK_RE.findall(s))
|
39 |
-
return hits >=
|
40 |
|
41 |
def _clean_for_summary(text: str) -> str:
|
42 |
out = []
|
@@ -75,21 +79,21 @@ def _keyword_summary_en(contexts: List[str]) -> List[str]:
|
|
75 |
add("Wallpaper repair or replacement; some areas replaced with plaster and paint.")
|
76 |
if ("alçı boya" in text) or ("boya işi" in text) or ("plaster" in text) or ("boya" in text):
|
77 |
add("Wall plastering and painting works.")
|
78 |
-
if "seramik" in text:
|
79 |
add("Ceramic tiling works (including grouting).")
|
80 |
if ("dilatasyon" in text) or ("ar 153" in text) or ("ar153" in text):
|
81 |
add("Installation of AR 153–050 floor expansion joint profile with accessories and insulation.")
|
82 |
-
if "daş yunu" in text:
|
83 |
add("Rock wool insulation installed where required.")
|
84 |
-
if ("sütunlarda" in text) or ("üzlüyün" in text):
|
85 |
add("Repair of wall cladding on columns.")
|
86 |
-
if ("m²" in text) or ("ədəd" in text) or ("azn" in text):
|
87 |
add("Bill of quantities style lines with unit prices and measures (m², pcs).")
|
88 |
|
89 |
if not bullets:
|
90 |
bullets = [
|
91 |
-
"The document appears to be a bill of quantities
|
92 |
-
"Scope includes demolition/reinstallation, finishing (plaster & paint), tiling, and profiles.",
|
93 |
]
|
94 |
return bullets[:5]
|
95 |
|
@@ -112,6 +116,7 @@ class SimpleRAG:
|
|
112 |
self._translator = None # lazy
|
113 |
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim)
|
114 |
self.chunks: List[str] = []
|
|
|
115 |
self._load()
|
116 |
|
117 |
def _load(self) -> None:
|
@@ -134,22 +139,39 @@ class SimpleRAG:
|
|
134 |
|
135 |
@staticmethod
|
136 |
def _pdf_to_texts(pdf_path: Path, step: int = 1400) -> List[str]:
|
137 |
-
|
138 |
pages: List[str] = []
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
chunks: List[str] = []
|
144 |
-
for
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
chunks.append(part)
|
149 |
return chunks
|
150 |
|
151 |
def add_pdf(self, pdf_path: Path) -> int:
|
152 |
texts = self._pdf_to_texts(pdf_path)
|
|
|
153 |
if not texts:
|
154 |
return 0
|
155 |
emb = self.model.encode(texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False)
|
@@ -187,7 +209,17 @@ class SimpleRAG:
|
|
187 |
except Exception:
|
188 |
return texts
|
189 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 4) -> str:
|
|
|
|
|
191 |
if not contexts:
|
192 |
return "No relevant context found. Please upload a PDF or ask a more specific question."
|
193 |
|
@@ -195,27 +227,27 @@ class SimpleRAG:
|
|
195 |
cleaned_contexts = [_clean_for_summary(c) for c in contexts[:5]]
|
196 |
cleaned_contexts = [c for c in cleaned_contexts if len(c) > 40]
|
197 |
if not cleaned_contexts:
|
198 |
-
|
|
|
199 |
|
200 |
# 2) Pre-translate paragraphs to EN when target is EN
|
201 |
translated = self._translate_to_en(cleaned_contexts) if OUTPUT_LANG == "en" else cleaned_contexts
|
202 |
|
203 |
-
# 3) Split into candidate sentences and filter
|
204 |
candidates: List[str] = []
|
205 |
for para in translated:
|
206 |
for s in _split_sentences(para):
|
207 |
w = s.split()
|
208 |
if not (6 <= len(w) <= 60):
|
209 |
continue
|
210 |
-
|
211 |
-
|
212 |
-
if not re.search(r"[.!?](?:[\"'])?$", s): # must end with punctuation
|
213 |
continue
|
214 |
if _tabular_like(s) or _mostly_numeric(s):
|
215 |
continue
|
216 |
candidates.append(" ".join(w))
|
217 |
|
218 |
-
# 4) Fallback if no
|
219 |
if not candidates:
|
220 |
bullets = _keyword_summary_en(cleaned_contexts)
|
221 |
return "Answer (based on document context):\n" + "\n".join(f"- {b}" for b in bullets)
|
|
|
23 |
|
24 |
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ")
|
25 |
NUM_TOK_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
|
26 |
+
GENERIC_Q_RE = re.compile(
|
27 |
+
r"(what\s+is\s+(it|this|the\s+document)\s+about\??|what\s+is\s+about\??|summary|overview)",
|
28 |
+
re.IGNORECASE,
|
29 |
+
)
|
30 |
|
31 |
def _split_sentences(text: str) -> List[str]:
|
32 |
return [s.strip() for s in re.split(r'(?<=[.!?])\s+|[\r\n]+', text) if s.strip()]
|
|
|
40 |
|
41 |
def _tabular_like(s: str) -> bool:
|
42 |
hits = len(NUM_TOK_RE.findall(s))
|
43 |
+
return hits >= 4 or len(s) < 15 # daha səxavətli
|
44 |
|
45 |
def _clean_for_summary(text: str) -> str:
|
46 |
out = []
|
|
|
79 |
add("Wallpaper repair or replacement; some areas replaced with plaster and paint.")
|
80 |
if ("alçı boya" in text) or ("boya işi" in text) or ("plaster" in text) or ("boya" in text):
|
81 |
add("Wall plastering and painting works.")
|
82 |
+
if "seramik" in text or "ceramic" in text:
|
83 |
add("Ceramic tiling works (including grouting).")
|
84 |
if ("dilatasyon" in text) or ("ar 153" in text) or ("ar153" in text):
|
85 |
add("Installation of AR 153–050 floor expansion joint profile with accessories and insulation.")
|
86 |
+
if "daş yunu" in text or "rock wool" in text:
|
87 |
add("Rock wool insulation installed where required.")
|
88 |
+
if ("sütunlarda" in text) or ("üzlüyün" in text) or ("cladding" in text):
|
89 |
add("Repair of wall cladding on columns.")
|
90 |
+
if ("m²" in text) or ("ədəd" in text) or ("azn" in text) or ("unit price" in text):
|
91 |
add("Bill of quantities style lines with unit prices and measures (m², pcs).")
|
92 |
|
93 |
if not bullets:
|
94 |
bullets = [
|
95 |
+
"The document appears to be a bill of quantities or a structured list of works.",
|
96 |
+
"Scope likely includes demolition/reinstallation, finishing (plaster & paint), tiling, and profiles.",
|
97 |
]
|
98 |
return bullets[:5]
|
99 |
|
|
|
116 |
self._translator = None # lazy
|
117 |
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim)
|
118 |
self.chunks: List[str] = []
|
119 |
+
self.last_added: List[str] = [] # son yüklənən faylın parçaları (RAM)
|
120 |
self._load()
|
121 |
|
122 |
def _load(self) -> None:
|
|
|
139 |
|
140 |
@staticmethod
|
141 |
def _pdf_to_texts(pdf_path: Path, step: int = 1400) -> List[str]:
|
142 |
+
# 1) pypdf
|
143 |
pages: List[str] = []
|
144 |
+
try:
|
145 |
+
reader = PdfReader(str(pdf_path))
|
146 |
+
for p in reader.pages:
|
147 |
+
t = p.extract_text() or ""
|
148 |
+
if t.strip():
|
149 |
+
pages.append(t)
|
150 |
+
except Exception:
|
151 |
+
pages = []
|
152 |
+
|
153 |
+
full = " ".join(pages).strip()
|
154 |
+
if not full:
|
155 |
+
# 2) pdfminer fallback
|
156 |
+
try:
|
157 |
+
from pdfminer.high_level import extract_text as pdfminer_extract_text
|
158 |
+
full = (pdfminer_extract_text(str(pdf_path)) or "").strip()
|
159 |
+
except Exception:
|
160 |
+
full = ""
|
161 |
+
|
162 |
+
if not full:
|
163 |
+
return []
|
164 |
+
|
165 |
chunks: List[str] = []
|
166 |
+
for i in range(0, len(full), step):
|
167 |
+
part = full[i : i + step].strip()
|
168 |
+
if part:
|
169 |
+
chunks.append(part)
|
|
|
170 |
return chunks
|
171 |
|
172 |
def add_pdf(self, pdf_path: Path) -> int:
|
173 |
texts = self._pdf_to_texts(pdf_path)
|
174 |
+
self.last_added = texts[:] # son faylı yadda saxla (summarize fallback üçün)
|
175 |
if not texts:
|
176 |
return 0
|
177 |
emb = self.model.encode(texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False)
|
|
|
209 |
except Exception:
|
210 |
return texts
|
211 |
|
212 |
+
def _prepare_contexts(self, question: str, contexts: List[str]) -> List[str]:
|
213 |
+
# Generik sual və ya boş axtarış halında: son yüklənən fayldan istifadə et
|
214 |
+
generic = (len(question.split()) <= 5) or bool(GENERIC_Q_RE.search(question or ""))
|
215 |
+
if (not contexts or generic) and self.last_added:
|
216 |
+
base = self.last_added[:5]
|
217 |
+
return base
|
218 |
+
return contexts
|
219 |
+
|
220 |
def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 4) -> str:
|
221 |
+
contexts = self._prepare_contexts(question, contexts)
|
222 |
+
|
223 |
if not contexts:
|
224 |
return "No relevant context found. Please upload a PDF or ask a more specific question."
|
225 |
|
|
|
227 |
cleaned_contexts = [_clean_for_summary(c) for c in contexts[:5]]
|
228 |
cleaned_contexts = [c for c in cleaned_contexts if len(c) > 40]
|
229 |
if not cleaned_contexts:
|
230 |
+
bullets = _keyword_summary_en(contexts[:5])
|
231 |
+
return "Answer (based on document context):\n" + "\n".join(f"- {b}" for b in bullets)
|
232 |
|
233 |
# 2) Pre-translate paragraphs to EN when target is EN
|
234 |
translated = self._translate_to_en(cleaned_contexts) if OUTPUT_LANG == "en" else cleaned_contexts
|
235 |
|
236 |
+
# 3) Split into candidate sentences and filter
|
237 |
candidates: List[str] = []
|
238 |
for para in translated:
|
239 |
for s in _split_sentences(para):
|
240 |
w = s.split()
|
241 |
if not (6 <= len(w) <= 60):
|
242 |
continue
|
243 |
+
# tam cümlə tələbi (ya düzgün sonlu durğu, ya da kifayət qədər uzunluq)
|
244 |
+
if not re.search(r"[.!?](?:[\"'])?$", s) and len(w) < 18:
|
|
|
245 |
continue
|
246 |
if _tabular_like(s) or _mostly_numeric(s):
|
247 |
continue
|
248 |
candidates.append(" ".join(w))
|
249 |
|
250 |
+
# 4) Fallback if no sentences
|
251 |
if not candidates:
|
252 |
bullets = _keyword_summary_en(cleaned_contexts)
|
253 |
return "Answer (based on document context):\n" + "\n".join(f"- {b}" for b in bullets)
|
requirements.txt
CHANGED
@@ -7,3 +7,4 @@ transformers>=4.40
|
|
7 |
sentencepiece
|
8 |
sacremoses
|
9 |
python-multipart
|
|
|
|
7 |
sentencepiece
|
8 |
sacremoses
|
9 |
python-multipart
|
10 |
+
pdfminer.six
|