Spaces:
Running
Running
Commit
·
ebbe4db
1
Parent(s):
edc48fd
English UX + extractive summarizer
Browse files- app/api.py +2 -2
- app/rag_system.py +88 -97
app/api.py
CHANGED
@@ -32,12 +32,12 @@ def health():
|
|
32 |
async def upload_pdf(file: UploadFile = File(...)):
|
33 |
try:
|
34 |
if not file.filename.lower().endswith(".pdf"):
|
35 |
-
http400("
|
36 |
dest = UPLOAD_DIR / file.filename
|
37 |
with dest.open("wb") as f:
|
38 |
shutil.copyfileobj(file.file, f)
|
39 |
chunks_added = rag.add_pdf(dest)
|
40 |
-
return
|
41 |
except Exception as e:
|
42 |
traceback.print_exc()
|
43 |
return JSONResponse(status_code=500, content={"detail": f"Server xətası: {str(e)}"})
|
|
|
32 |
async def upload_pdf(file: UploadFile = File(...)):
|
33 |
try:
|
34 |
if not file.filename.lower().endswith(".pdf"):
|
35 |
+
http400("Only PDF files are accepted.")
|
36 |
dest = UPLOAD_DIR / file.filename
|
37 |
with dest.open("wb") as f:
|
38 |
shutil.copyfileobj(file.file, f)
|
39 |
chunks_added = rag.add_pdf(dest)
|
40 |
+
return JSONResponse(status_code=500, content={"detail": f"Server error: {str(e)}"})
|
41 |
except Exception as e:
|
42 |
traceback.print_exc()
|
43 |
return JSONResponse(status_code=500, content={"detail": f"Server xətası: {str(e)}"})
|
app/rag_system.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
# app/rag_system.py
|
2 |
from __future__ import annotations
|
3 |
|
4 |
-
import os
|
5 |
from pathlib import Path
|
6 |
from typing import List, Tuple
|
7 |
|
@@ -10,32 +10,47 @@ import numpy as np
|
|
10 |
from pypdf import PdfReader
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
|
13 |
-
|
14 |
-
# -----------------------------
|
15 |
-
# Konfiqurasiya & qovluqlar
|
16 |
-
# -----------------------------
|
17 |
ROOT_DIR = Path(__file__).resolve().parent.parent
|
18 |
DATA_DIR = ROOT_DIR / "data"
|
19 |
UPLOAD_DIR = DATA_DIR / "uploads"
|
20 |
INDEX_DIR = DATA_DIR / "index"
|
21 |
-
|
22 |
-
# HF Spaces-də yazma icazəsi olan cache qovluğu
|
23 |
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache")))
|
24 |
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR):
|
25 |
d.mkdir(parents=True, exist_ok=True)
|
26 |
|
27 |
-
# Model adı ENV-dən dəyişdirilə bilər
|
28 |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
class SimpleRAG:
|
32 |
"""
|
33 |
-
|
34 |
-
-
|
35 |
-
-
|
36 |
-
-
|
37 |
"""
|
38 |
-
|
39 |
def __init__(
|
40 |
self,
|
41 |
index_path: Path = INDEX_DIR / "faiss.index",
|
@@ -48,39 +63,23 @@ class SimpleRAG:
|
|
48 |
self.model_name = model_name
|
49 |
self.cache_dir = Path(cache_dir)
|
50 |
|
51 |
-
# Model
|
52 |
-
# cache_folder Spaces-də /.cache icazə xətasının qarşısını alır
|
53 |
self.model = SentenceTransformer(self.model_name, cache_folder=str(self.cache_dir))
|
54 |
self.embed_dim = self.model.get_sentence_embedding_dimension()
|
55 |
|
56 |
-
# FAISS index və meta (chunks)
|
57 |
self.index: faiss.Index = None # type: ignore
|
58 |
self.chunks: List[str] = []
|
59 |
-
|
60 |
self._load()
|
61 |
|
62 |
-
# -----------------------------
|
63 |
-
# Yükləmə / Saxlama
|
64 |
-
# -----------------------------
|
65 |
def _load(self) -> None:
|
66 |
-
# Chunks (meta) yüklə
|
67 |
if self.meta_path.exists():
|
68 |
try:
|
69 |
self.chunks = np.load(self.meta_path, allow_pickle=True).tolist()
|
70 |
except Exception:
|
71 |
-
# zədələnmişsə sıfırla
|
72 |
self.chunks = []
|
73 |
-
|
74 |
-
# FAISS index yüklə
|
75 |
if self.index_path.exists():
|
76 |
try:
|
77 |
idx = faiss.read_index(str(self.index_path))
|
78 |
-
|
79 |
-
if hasattr(idx, "d") and idx.d == self.embed_dim:
|
80 |
-
self.index = idx
|
81 |
-
else:
|
82 |
-
# uyğunsuzluqda sıfırdan qur
|
83 |
-
self.index = faiss.IndexFlatIP(self.embed_dim)
|
84 |
except Exception:
|
85 |
self.index = faiss.IndexFlatIP(self.embed_dim)
|
86 |
else:
|
@@ -90,96 +89,88 @@ class SimpleRAG:
|
|
90 |
faiss.write_index(self.index, str(self.index_path))
|
91 |
np.save(self.meta_path, np.array(self.chunks, dtype=object))
|
92 |
|
93 |
-
# -----------------------------
|
94 |
-
# PDF -> Mətn -> Parçalama
|
95 |
-
# -----------------------------
|
96 |
@staticmethod
|
97 |
def _pdf_to_texts(pdf_path: Path, step: int = 800) -> List[str]:
|
98 |
reader = PdfReader(str(pdf_path))
|
99 |
-
|
100 |
-
for
|
101 |
-
t =
|
102 |
if t.strip():
|
103 |
-
|
104 |
-
|
105 |
chunks: List[str] = []
|
106 |
-
for txt in
|
107 |
for i in range(0, len(txt), step):
|
108 |
-
|
109 |
-
if
|
110 |
-
chunks.append(
|
111 |
return chunks
|
112 |
|
113 |
-
# -----------------------------
|
114 |
-
# Index-ə əlavə
|
115 |
-
# -----------------------------
|
116 |
def add_pdf(self, pdf_path: Path) -> int:
|
117 |
texts = self._pdf_to_texts(pdf_path)
|
118 |
if not texts:
|
119 |
return 0
|
120 |
-
|
121 |
-
emb = self.model.encode(
|
122 |
-
texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False
|
123 |
-
)
|
124 |
-
# FAISS-ə əlavə
|
125 |
self.index.add(emb.astype(np.float32))
|
126 |
-
# Meta-ya əlavə
|
127 |
self.chunks.extend(texts)
|
128 |
-
# Diskə yaz
|
129 |
self._persist()
|
130 |
return len(texts)
|
131 |
|
132 |
-
# -----------------------------
|
133 |
-
# Axtarış
|
134 |
-
# -----------------------------
|
135 |
def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]:
|
136 |
-
if self.index is None:
|
137 |
return []
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
D, I = self.index.search(q.astype(np.float32), min(k, max(1, self.index.ntotal)))
|
142 |
-
results: List[Tuple[str, float]] = []
|
143 |
-
|
144 |
if I.size > 0 and self.chunks:
|
145 |
for idx, score in zip(I[0], D[0]):
|
146 |
if 0 <= idx < len(self.chunks):
|
147 |
-
|
148 |
-
return
|
149 |
|
150 |
-
#
|
151 |
-
|
152 |
-
# -----------------------------
|
153 |
-
def synthesize_answer(self, question: str, contexts: List[str]) -> str:
|
154 |
if not contexts:
|
155 |
-
return "
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
|
164 |
-
|
165 |
-
def synthesize_answer(question: str, contexts: List[str]) -> str:
|
166 |
-
if not contexts:
|
167 |
-
return "Kontekst tapılmadı. Sualı daha dəqiq verin və ya PDF yükləyin."
|
168 |
-
joined = "\n---\n".join(contexts[:3])
|
169 |
-
return (
|
170 |
-
f"Sual: {question}\n\n"
|
171 |
-
f"Cavab (kontekstdən çıxarış):\n{joined}\n\n"
|
172 |
-
f"(Qeyd: Demo rejimi — LLM inteqrasiyası üçün sonradan OpenAI/Groq və s. əlavə edilə bilər.)"
|
173 |
-
)
|
174 |
-
|
175 |
-
|
176 |
-
# Faylı import edən tərəfin rahatlığı üçün bu qovluqları export edirik
|
177 |
-
__all__ = [
|
178 |
-
"SimpleRAG",
|
179 |
-
"synthesize_answer",
|
180 |
-
"DATA_DIR",
|
181 |
-
"UPLOAD_DIR",
|
182 |
-
"INDEX_DIR",
|
183 |
-
"CACHE_DIR",
|
184 |
-
"MODEL_NAME",
|
185 |
-
]
|
|
|
1 |
# app/rag_system.py
|
2 |
from __future__ import annotations
|
3 |
|
4 |
+
import os, re
|
5 |
from pathlib import Path
|
6 |
from typing import List, Tuple
|
7 |
|
|
|
10 |
from pypdf import PdfReader
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
|
13 |
+
# Paths & caches
|
|
|
|
|
|
|
14 |
ROOT_DIR = Path(__file__).resolve().parent.parent
|
15 |
DATA_DIR = ROOT_DIR / "data"
|
16 |
UPLOAD_DIR = DATA_DIR / "uploads"
|
17 |
INDEX_DIR = DATA_DIR / "index"
|
|
|
|
|
18 |
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache")))
|
19 |
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR):
|
20 |
d.mkdir(parents=True, exist_ok=True)
|
21 |
|
|
|
22 |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
23 |
|
24 |
+
def _split_sentences(text: str) -> List[str]:
|
25 |
+
# Split by sentence end or newlines
|
26 |
+
return [s.strip() for s in re.split(r'(?<=[\.\!\?])\s+|[\r\n]+', text) if s.strip()]
|
27 |
+
|
28 |
+
def _mostly_numeric(s: str) -> bool:
|
29 |
+
alnum = [c for c in s if c.isalnum()]
|
30 |
+
if not alnum:
|
31 |
+
return True
|
32 |
+
digits = sum(c.isdigit() for c in alnum)
|
33 |
+
return digits / len(alnum) > 0.5
|
34 |
+
|
35 |
+
def _clean_for_summary(text: str) -> str:
|
36 |
+
# Drop lines that are mostly numbers / too short
|
37 |
+
lines = []
|
38 |
+
for ln in text.splitlines():
|
39 |
+
t = " ".join(ln.split())
|
40 |
+
if len(t) < 10:
|
41 |
+
continue
|
42 |
+
if _mostly_numeric(t):
|
43 |
+
continue
|
44 |
+
lines.append(t)
|
45 |
+
return " ".join(lines)
|
46 |
|
47 |
class SimpleRAG:
|
48 |
"""
|
49 |
+
- PDF -> text chunking
|
50 |
+
- Sentence-Transformers embeddings (cosine/IP)
|
51 |
+
- FAISS index
|
52 |
+
- Extractive answer in EN
|
53 |
"""
|
|
|
54 |
def __init__(
|
55 |
self,
|
56 |
index_path: Path = INDEX_DIR / "faiss.index",
|
|
|
63 |
self.model_name = model_name
|
64 |
self.cache_dir = Path(cache_dir)
|
65 |
|
|
|
|
|
66 |
self.model = SentenceTransformer(self.model_name, cache_folder=str(self.cache_dir))
|
67 |
self.embed_dim = self.model.get_sentence_embedding_dimension()
|
68 |
|
|
|
69 |
self.index: faiss.Index = None # type: ignore
|
70 |
self.chunks: List[str] = []
|
|
|
71 |
self._load()
|
72 |
|
|
|
|
|
|
|
73 |
def _load(self) -> None:
|
|
|
74 |
if self.meta_path.exists():
|
75 |
try:
|
76 |
self.chunks = np.load(self.meta_path, allow_pickle=True).tolist()
|
77 |
except Exception:
|
|
|
78 |
self.chunks = []
|
|
|
|
|
79 |
if self.index_path.exists():
|
80 |
try:
|
81 |
idx = faiss.read_index(str(self.index_path))
|
82 |
+
self.index = idx if getattr(idx, "d", None) == self.embed_dim else faiss.IndexFlatIP(self.embed_dim)
|
|
|
|
|
|
|
|
|
|
|
83 |
except Exception:
|
84 |
self.index = faiss.IndexFlatIP(self.embed_dim)
|
85 |
else:
|
|
|
89 |
faiss.write_index(self.index, str(self.index_path))
|
90 |
np.save(self.meta_path, np.array(self.chunks, dtype=object))
|
91 |
|
|
|
|
|
|
|
92 |
@staticmethod
|
93 |
def _pdf_to_texts(pdf_path: Path, step: int = 800) -> List[str]:
|
94 |
reader = PdfReader(str(pdf_path))
|
95 |
+
pages = []
|
96 |
+
for p in reader.pages:
|
97 |
+
t = p.extract_text() or ""
|
98 |
if t.strip():
|
99 |
+
pages.append(t)
|
|
|
100 |
chunks: List[str] = []
|
101 |
+
for txt in pages:
|
102 |
for i in range(0, len(txt), step):
|
103 |
+
part = txt[i:i+step].strip()
|
104 |
+
if part:
|
105 |
+
chunks.append(part)
|
106 |
return chunks
|
107 |
|
|
|
|
|
|
|
108 |
def add_pdf(self, pdf_path: Path) -> int:
|
109 |
texts = self._pdf_to_texts(pdf_path)
|
110 |
if not texts:
|
111 |
return 0
|
112 |
+
emb = self.model.encode(texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False)
|
|
|
|
|
|
|
|
|
113 |
self.index.add(emb.astype(np.float32))
|
|
|
114 |
self.chunks.extend(texts)
|
|
|
115 |
self._persist()
|
116 |
return len(texts)
|
117 |
|
|
|
|
|
|
|
118 |
def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]:
|
119 |
+
if self.index is None or self.index.ntotal == 0:
|
120 |
return []
|
121 |
+
q = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
|
122 |
+
D, I = self.index.search(q, min(k, max(1, self.index.ntotal)))
|
123 |
+
out: List[Tuple[str, float]] = []
|
|
|
|
|
|
|
124 |
if I.size > 0 and self.chunks:
|
125 |
for idx, score in zip(I[0], D[0]):
|
126 |
if 0 <= idx < len(self.chunks):
|
127 |
+
out.append((self.chunks[idx], float(score)))
|
128 |
+
return out
|
129 |
|
130 |
+
# -------- Improved English answer --------
|
131 |
+
def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 5) -> str:
|
|
|
|
|
132 |
if not contexts:
|
133 |
+
return "No relevant context found. Please upload a PDF or ask a more specific question."
|
134 |
+
|
135 |
+
# Prepare candidate sentences
|
136 |
+
candidates: List[str] = []
|
137 |
+
for c in contexts[:5]:
|
138 |
+
cleaned = _clean_for_summary(c)
|
139 |
+
for s in _split_sentences(cleaned):
|
140 |
+
if 20 <= len(s) <= 240 and not _mostly_numeric(s):
|
141 |
+
candidates.append(s)
|
142 |
+
|
143 |
+
# Fallback if still nothing
|
144 |
+
if not candidates:
|
145 |
+
return "The document appears to be mostly tabular/numeric; no clear sentences to summarize."
|
146 |
+
|
147 |
+
# Rank candidates by cosine similarity to the question
|
148 |
+
q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
|
149 |
+
cand_emb = self.model.encode(candidates, convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
|
150 |
+
scores = (cand_emb @ q_emb.T).ravel()
|
151 |
+
order = np.argsort(-scores)
|
152 |
+
|
153 |
+
# Pick top sentences with simple de-dup
|
154 |
+
selected: List[str] = []
|
155 |
+
seen = set()
|
156 |
+
for i in order:
|
157 |
+
s = candidates[i].strip()
|
158 |
+
key = s.lower()
|
159 |
+
if key in seen:
|
160 |
+
continue
|
161 |
+
seen.add(key)
|
162 |
+
selected.append(s)
|
163 |
+
if len(selected) >= max_sentences:
|
164 |
+
break
|
165 |
+
|
166 |
+
bullet = "\n".join(f"- {s}" for s in selected)
|
167 |
+
note = " (The PDF seems largely tabular; extracted the most relevant lines.)" if all(_mostly_numeric(c) for c in contexts) else ""
|
168 |
+
return f"Answer (based on document context):\n{bullet}{note}"
|
169 |
+
|
170 |
+
|
171 |
+
# Module-level alias
|
172 |
+
def synthesize_answer(question: str, contexts: List[str]) -> str:
|
173 |
+
return SimpleRAG().synthesize_answer(question, contexts)
|
174 |
|
175 |
|
176 |
+
__all__ = ["SimpleRAG", "synthesize_answer", "DATA_DIR", "UPLOAD_DIR", "INDEX_DIR", "CACHE_DIR", "MODEL_NAME"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|