# app/rag_system.py from __future__ import annotations import os import re from pathlib import Path from typing import List, Tuple, Optional import faiss import numpy as np from ftfy import fix_text as _ftfy_fix # Prefer pypdf; fallback to PyPDF2 if needed try: from pypdf import PdfReader # type: ignore except Exception: # pragma: no cover try: from PyPDF2 import PdfReader # type: ignore except Exception: # pragma: no cover PdfReader = None # will try pdfminer if available # sentence-transformers encoder from sentence_transformers import SentenceTransformer # ---------------- Paths & Cache (HF-safe) ---------------- ROOT_DIR = Path(os.getenv("APP_ROOT", "/app")) # HF Spaces writeable base DATA_DIR = Path(os.getenv("DATA_DIR", str(ROOT_DIR / "data"))) UPLOAD_DIR = Path(os.getenv("UPLOAD_DIR", str(DATA_DIR / "uploads"))) INDEX_DIR = Path(os.getenv("INDEX_DIR", str(DATA_DIR / "index"))) CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache"))) # transformers uses HF_HOME for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR): d.mkdir(parents=True, exist_ok=True) # ---------------- Config ---------------- MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2") OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").strip().lower() # "en" → translate AZ→EN # ---------------- Text helpers ---------------- # Join AZ letters split by spaces (e.g., "H Ə F T Ə" → "HƏFTƏ") AZ_LATIN = "A-Za-zƏəĞğİıÖöŞşÇçÜü" _SINGLE_LETTER_RUN = re.compile(rf"\b(?:[{AZ_LATIN}]\s+){{2,}}[{AZ_LATIN}]\b") def _fix_intra_word_spaces(s: str) -> str: if not s: return s return _SINGLE_LETTER_RUN.sub(lambda m: re.sub(r"\s+", "", m.group(0)), s) def _fix_mojibake(s: str) -> str: """Fix common UTF-8-as-Latin-1 mojibake quickly; then ftfy.""" if not s: return s if any(sym in s for sym in ("Ã", "Ä", "Å", "Ð", "Þ", "þ", "â")): try: s = s.encode("latin-1", "ignore").decode("utf-8", "ignore") except Exception: pass # ftfy final pass (safe on already-correct text) return _ftfy_fix(s) def _clean_for_summary(text: str) -> str: """Remove ultra-short / numeric / tabular-ish lines, collapse spaces.""" NUM_TOKEN_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|mt|m2)\b", re.IGNORECASE) def _mostly_numeric(s: str) -> bool: alnum = [c for c in s if c.isalnum()] if not alnum: return True digits = sum(c.isdigit() for c in alnum) return digits / max(1, len(alnum)) > 0.30 def _tabular_like(s: str) -> bool: hits = len(NUM_TOKEN_RE.findall(s)) return hits >= 2 or "Page" in s or len(s) < 20 out = [] for ln in text.splitlines(): t = " ".join(ln.split()) if not t or _mostly_numeric(t) or _tabular_like(t): continue out.append(t) return " ".join(out) def _split_sentences(text: str) -> List[str]: # simple splitter ok for extractive snippets return [s.strip() for s in re.split(r"(?<=[\.!\?])\s+|[\r\n]+", text) if s.strip()] STOPWORDS = { "the","a","an","and","or","of","to","in","on","for","with","by", "this","that","these","those","is","are","was","were","be","been","being", "at","as","it","its","from","into","about","over","after","before","than", "such","can","could","should","would","may","might","will","shall", } def _keywords(text: str) -> List[str]: toks = re.findall(r"[A-Za-zÀ-ÖØ-öø-ÿ0-9]+", text.lower()) return [t for t in toks if t not in STOPWORDS and len(t) > 2] def _sim_jaccard(a: str, b: str) -> float: aw = set(a.lower().split()) bw = set(b.lower().split()) if not aw or not bw: return 0.0 return len(aw & bw) / len(aw | bw) # ---------------- RAG Core ---------------- class SimpleRAG: """ Minimal RAG core: - FAISS (IP) over sentence-transformers embeddings - PDF → texts with robust decoding (pypdf/PyPDF2 + ftfy; optional pdfminer fallback) - Extractive answer synthesis with embedding ranking + keyword fallback """ def __init__( self, index_path: Path = INDEX_DIR / "faiss.index", meta_path: Path = INDEX_DIR / "meta.npy", model_name: str = MODEL_NAME, cache_dir: Path = CACHE_DIR, ): self.index_path = Path(index_path) self.meta_path = Path(meta_path) self.model_name = model_name self.cache_dir = Path(cache_dir) self.model = SentenceTransformer(self.model_name, cache_folder=str(self.cache_dir)) self.embed_dim = int(self.model.get_sentence_embedding_dimension()) self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim) self.chunks: List[str] = [] self.last_added: List[str] = [] self._translator = None # lazy init self._load() # ---------- Persistence ---------- def _load(self) -> None: if self.meta_path.exists(): try: self.chunks = np.load(self.meta_path, allow_pickle=True).tolist() except Exception: self.chunks = [] if self.index_path.exists(): try: idx = faiss.read_index(str(self.index_path)) if getattr(idx, "d", None) == self.embed_dim: self.index = idx except Exception: pass def _persist(self) -> None: faiss.write_index(self.index, str(self.index_path)) np.save(self.meta_path, np.array(self.chunks, dtype=object)) # ---------- Public utils ---------- @property def is_empty(self) -> bool: return getattr(self.index, "ntotal", 0) == 0 or not self.chunks @property def faiss_ntotal(self) -> int: return int(getattr(self.index, "ntotal", 0)) @property def model_dim(self) -> int: return int(self.embed_dim) def reset_index(self) -> None: self.index = faiss.IndexFlatIP(self.embed_dim) self.chunks = [] self.last_added = [] try: if self.index_path.exists(): self.index_path.unlink() except Exception: pass try: if self.meta_path.exists(): self.meta_path.unlink() except Exception: pass # ---------- PDF → texts ---------- @staticmethod def _pdf_to_texts(pdf_path: Path, step: int = 800) -> List[str]: texts: List[str] = [] # A) pypdf / PyPDF2 if PdfReader is not None: try: reader = PdfReader(str(pdf_path)) for p in getattr(reader, "pages", []): t = p.extract_text() or "" t = _fix_mojibake(t) t = _fix_intra_word_spaces(t) if t.strip(): texts.append(t) except Exception: pass # B) Optional pdfminer fallback if nothing extracted if not texts: try: from pdfminer.high_level import extract_text # type: ignore raw = extract_text(str(pdf_path)) or "" raw = _fix_mojibake(raw) raw = _fix_intra_word_spaces(raw) if raw.strip(): texts = [raw] except Exception: pass # Split to fixed-size chunks (simple & fast) chunks: List[str] = [] for txt in texts: for i in range(0, len(txt), step): part = txt[i : i + step].strip() if part: chunks.append(part) return chunks # ---------- Indexing ---------- def add_pdf(self, pdf_path: Path) -> int: texts = self._pdf_to_texts(pdf_path) if not texts: return 0 # final cleaning for safety texts = [_fix_mojibake(_fix_intra_word_spaces(t)) for t in texts] emb = self.model.encode( texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False ) self.index.add(emb.astype(np.float32)) self.chunks.extend(texts) self.last_added = texts[:] self._persist() return len(texts) # ---------- Search ---------- def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]: if self.is_empty: return [] q = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) k = max(1, min(int(k or 5), self.faiss_ntotal or 1)) D, I = self.index.search(q, k) out: List[Tuple[str, float]] = [] if I.size > 0 and self.chunks: for idx, score in zip(I[0], D[0]): if 0 <= idx < len(self.chunks): out.append((self.chunks[idx], float(score))) return out # ---------- Translation (optional) ---------- def _translate_to_en(self, texts: List[str]) -> List[str]: if not texts: return texts try: from transformers import pipeline # lazy import if self._translator is None: self._translator = pipeline( "translation", model="Helsinki-NLP/opus-mt-az-en", cache_dir=str(self.cache_dir), device=-1, ) outs = self._translator(texts, max_length=400) return [o["translation_text"].strip() for o in outs] except Exception: return texts # graceful fallback # ---------- Fallbacks ---------- def _keyword_fallback(self, question: str, pool: List[str], limit_sentences: int = 4) -> List[str]: qk = set(_keywords(question)) if not qk: return [] candidates: List[Tuple[float, str]] = [] for text in pool[:200]: cleaned = _clean_for_summary(text) for s in _split_sentences(cleaned): w = s.split() if not (8 <= len(w) <= 40): continue toks = set(_keywords(s)) if not toks: continue overlap = len(qk & toks) if overlap == 0: continue length_penalty = max(8, min(40, len(w))) score = overlap + min(0.5, overlap / length_penalty) candidates.append((score, s)) candidates.sort(key=lambda x: x[0], reverse=True) out: List[str] = [] for _, s in candidates: if any(_sim_jaccard(s, t) >= 0.82 for t in out): continue out.append(s) if len(out) >= limit_sentences: break return out # ---------- Answer Synthesis ---------- def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 4) -> str: if not contexts and self.is_empty: return "No relevant context found. Index is empty — upload a PDF first." # Strong decoding & spacing fixes on contexts contexts = [_fix_mojibake(_fix_intra_word_spaces(c)) for c in (contexts or [])] # Build candidate sentences from top contexts local_pool: List[str] = [] for c in (contexts or [])[:5]: cleaned = _clean_for_summary(c) for s in _split_sentences(cleaned): w = s.split() if not (8 <= len(w) <= 40): continue local_pool.append(" ".join(w)) selected: List[str] = [] if local_pool: q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) cand_emb = self.model.encode(local_pool, convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) scores = (cand_emb @ q_emb.T).ravel() order = np.argsort(-scores) for i in order: s = local_pool[i].strip() if any(_sim_jaccard(s, t) >= 0.82 for t in selected): continue selected.append(s) if len(selected) >= max_sentences: break # Fallback via keywords over entire corpus if not selected: selected = self._keyword_fallback(question, self.chunks, limit_sentences=max_sentences) if not selected: return "No readable sentences matched the question. Try a more specific query." # Optional AZ→EN translate if output language is English and text is non-ASCII if OUTPUT_LANG == "en" and any(ord(ch) > 127 for ch in " ".join(selected)): try: selected = self._translate_to_en(selected) except Exception: pass bullets = "\n".join(f"- {s}" for s in selected) return f"Answer (based on document context):\n{bullets}" # Public API __all__ = [ "SimpleRAG", "UPLOAD_DIR", "INDEX_DIR", ]